C++11新特性std::tuple的使用方法

1. 引入头文件

#include <tuple>

2. std::tuple初始化

std::tuple<int, std::string, float> t1(10, "Test", 3.14);

这里要注意,不是所有的C++ 11编译器都支持copy-list-initialization的方式。如下代码所示。

std::tuple<int, int> foo_tuple()
{
 return {1, -1}; // Error until N4387
 return std::tuple<int, int>{1, -1}; // Always works
 return std::make_tuple(1, -1); // Always works
}

3. 打印std::tuple

打印std::tuple可以将它的元素逐个打印出来,不过非常繁琐,我们可以通过如下通用的打印函数,帮助我们一次性的将tuple的所有要素打印出来。

#include <iostream>
#include <tuple>
#include <string>

// helper function to print a tuple of any size
template<class Tuple, std::size_t N>
struct TuplePrinter {
 static void print(const Tuple& t)
 {
  TuplePrinter<Tuple, N-1>::print(t);
  std::cout << ", " << std::get<N-1>(t);
 }
};

template<class Tuple>
struct TuplePrinter<Tuple, 1> {
 static void print(const Tuple& t)
 {
  std::cout << std::get<0>(t);
 }
};

template<typename... Args, std::enable_if_t<sizeof...(Args) == 0, int> = 0>
void print(const std::tuple<Args...>& t)
{
 std::cout << "()\n";
}

template<typename... Args, std::enable_if_t<sizeof...(Args) != 0, int> = 0>
void print(const std::tuple<Args...>& t)
{
 std::cout << "(";
 TuplePrinter<decltype(t), sizeof...(Args)>::print(t);
 std::cout << ")\n";
}
// end helper function

int main()
{
 std::tuple<int, std::string, float> t1(10, "Test", 3.14);
 print(t1);
}

输出:

(10, Test, 3.14)

4、合并多个std::tuple

std::tuple_cat函数可以将多个std::tuple合并为一个tuple。

int main()
{
 std::tuple<int, std::string, float> t1(10, "Test", 3.14);
 int n = 7;
 auto t2 = std::tuple_cat(t1, std::make_tuple("Foo", "bar"), t1, std::tie(n));
 n = 42;
 print(t2);
}

输出:

(10, Test, 3.14, Foo, bar, 10, Test, 3.14, 42)

5. std::tuple的解包(unpack)

std::tie能够将std::tuple包含的要素解包(unpack)成单个的对象。

#include <iostream>
#include <tuple>
#include <string>

int main() {
 auto info = std::make_tuple(3.8, 'A', "Lisa Simpson");

 double score = 0.0;
 char grade;
 std::string name;
 std::tie(score, grade, name) = info;

 std::cout << "score:" << score << ", grade:" << grade << ", name:" << name << std::endl;

return 0;
}

输出:

score:3.8, grade:A, name:Lisa Simpson

std::tie还支持std::pair对象的解包(unpack)。

#include <iostream>
#include <tuple>
#include <string>
#include <utility>

int main() {
 auto info = std::make_pair(3.8, "Lisa Simpson");

 double score = 0.0;
 std::string name;
 std::tie(score, name) = info;

 std::cout << "score:" << score << ", name:" << name << std::endl;

return 0;
}

输出:

score:3.8, name:Lisa Simpson

当我们不关注tuple中的某个元素时,可以使用std::ignore忽略该元素。

#include <iostream>
#include <tuple>
#include <string>
#include <utility>

int main() {
 auto info = std::make_pair(3.8, "Lisa Simpson");

 double score = 0.0;
 std::string name;
 std::tie(score, std::ignore) = info;

 std::cout << "score:" << score << ", name:" << name << std::endl;

return 0;
}

输出:

score:3.8, name:

参考材料

https://en.cppreference.com/w/cpp/utility/tuple/tuple_cat

到此这篇关于C++11新特性-std::tuple的使用方法的文章就介绍到这了,更多相关C++11 std::tuple内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++第11版本中的一些强大的新特性小结

    Auto Type Deduction 自动类型推导 auto 关键字让用户得以使用 C++ 内置的类型推导特性. std::string something = somethingthatreturnsastring.getString(); auto something = somethingthatreturnsastring.getString(); Auto 关键字会对上述自变量(something)进行自动推导,得出其应该是 string 类型的结论,并在 auto 出现的地方用正确

  • 结合C++11的新特性来解析C++中的枚举与联合

    枚举 枚举是用户定义的类型,其中包含一组称为枚举器的命名的整型常数. 语法 // unscoped enum: enum [identifier] [: type] {enum-list}; // scoped enum: enum [class|struct] [identifier] [: type] {enum-list}; // Forward declaration of enumerations (C++11): enum A : int; // non-scoped enum mu

  • 浅析C++11新特性的Lambda表达式

    lambda简介 熟悉Python的程序员应该对lambda不陌生.简单来说,lambda就是一个匿名的可调用代码块.在C++11新标准中,lambda具有如下格式: [capture list] (parameter list) -> return type { function body } 可以看到,他有四个组成部分: 1.capture list: 捕获列表 2.parameter list: 参数列表 3.return type: 返回类型 4.function body: 执行代码

  • C++ 11新特性之大括号初始化详解

    本文主要给大家介绍了关于C++11新特性之大括号初始化的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: C++11之前,C++主要有以下几种初始化方式: //小括号初始化 string str("hello"); //等号初始化 string str="hello"; //大括号初始化 struct Studnet{ char* name; int age; }; Studnet s={"dablelv",18}; //

  • C++11新特性之自定义字面量

    1.示例 C++11新标准中引入了用户自定义字面量,也叫自定义后缀操作符,即通过实现一个后缀操作符,将申明了该后缀标识的字面量转化为需要的类型.考察如下代码: long double operator"" _mm(long double x) { return x / 1000; } long double operator"" _m(long double x) { return x; } long double operator"" _km(

  • C++11新特性之auto的使用

    前言 C++是一种强类型语言,声明变量时必须明确指出其类型.但是,在实践中,优势我们很难推断出某个表达式的值的类型,尤其是随着模板类型的出现,要想弄明白某些复杂表达式的返回类型就变得更加困难.为了解决这个问题,C++11中引入的auto主要有两种用途:自动类型推断和返回值占位.auto在C++98中的标识临时变量的语义,由于使用极少且多余,在C++11中已被删除.前后两个标准的auto,完全是两个概念. 一.自动类型推断 auto自动类型推断,用于从初始化表达式中推断出变量的数据类型.通过aut

  • 详解c++11新特性之模板的改进

    C++11关于模板有一些细节的改进: 模板的右尖括号 模板的别名 函数模板的默认模板参数 模板的右尖括号 C++11之前是不允许两个右尖括号出现的,会被认为是右移操作符,所以需要中间加个空格进行分割,避免发生编译错误. int main() { std::vector<std::vector<int>> a; // error std::vector<std::vector<int> > b; // ok } 这个我之前都不知道,我开始学编程的时候就已经是C

  • C++11新特性std::tuple的使用方法

    1. 引入头文件 #include <tuple> 2. std::tuple初始化 std::tuple<int, std::string, float> t1(10, "Test", 3.14); 这里要注意,不是所有的C++ 11编译器都支持copy-list-initialization的方式.如下代码所示. std::tuple<int, int> foo_tuple() { return {1, -1}; // Error until N

  • C++11新特性std::make_tuple的使用

    std::tuple是C++ 11中引入的一个非常有用的结构,以前我们要返回一个包含不同数据类型的返回值,一般都需要自定义一个结构体或者通过函数的参数来返回,现在std::tuple就可以帮我们搞定. 1.引用头文件 #include <tuple> 2. Tuple初始化 std::tuple的初始化可以通过构造函数实现. // Creating and Initializing a tuple std::tuple<int, double, std::string> resul

  • c++11新特性多线程操作实战

    c++11多线程操作 线程 thread int main() { thread t1(Test1); t1.join(); thread t2(Test2); t2.join(); thread t3 = t1; thread t4(t1); thread t5 = std::move(t1); thread t6(std::move(t1)); return 0; } t3,t4创建失败,因为thread的拷贝构造和赋值运算符重载的原型是: thread(const thread&) = d

  • c++11 新特性——智能指针使用详解

    c++11添加了新的智能指针,unique_ptr.shared_ptr和weak_ptr,同时也将auto_ptr置为废弃(deprecated). 但是在实际的使用过程中,很多人都会有这样的问题: 不知道三种智能指针的具体使用场景 无脑只使用shared_ptr 认为应该禁用raw pointer(裸指针,即Widget*这种形式),全部使用智能指针 初始化方法 class A { public: A(int size){ this->size = size; } A(){} void Sh

  • C++11新特性“=default”,“=delete”的使用

    1. =default 和=delete 概述 任何事物的出现都必然有着其出现的理由,伴随着每一个新的概念产生都会带来一系列的便利和价值.C++在不断的演变与发展,与此同时,伴随着许多新的特性和功能产生.=default.=delete 是C++11的新特性,分别为:显式缺省(告知编译器生成函数默认的缺省版本)和显式删除(告知编译器不生成函数默认的缺省版本).C++11中引进这两种新特性的目的是为了增强对"类默认函数的控制",从而让程序员更加精准地去控制默认版本的函数.其具体的功能和使

  • C++11新特性之变长参数模板详解

    目录 C++11 变长参数模板 变长函数参数包 如何解参数包 sizeof()获得函数参数个数 递归模板函数 变参模板展开 结论 C++11 变长参数模板 在C++11之前,无论是类模板 还是函数模板,都只能按其指定的样子,接受一组固定数量的模板参数: 这已经大大提升了代码的复用! 在C++11之后,加入了新的表示方 法,允许任意个数.任意类别的模板参数,同时也不需要在定义时将参数的个数固定.更加像"黑魔法"了. template<typename... Ts> class

  • C++11新特性之列表初始化的具体使用

    目录 统一的初始化方法 列表初始化的一些使用细节 初始化列表 1.任何长度的初始化列表 2.std::initialzer-list的使用细节 列表初始化防止类型收窄 在我们实际编程中,我们经常会碰到变量初始化的问题,对于不同的变量初始化的手段多种多样,比如说对于一个数组我们可以使用 int arr[] = {1,2,3}的方式初始化,又比如对于一个简单的结构体: struct A { int x; int y; }a={1,2}; 这些不同的初始化方法都有各自的适用范围和作用,且对于类来说不能

  • C++11新特性中auto 和 decltype 区别和联系

    C++11新特性中auto 和 decltype 区别和联系 一. auto简介 编程时候常常需要把表达式的值付给变量,需要在声明变量的时候清楚的知道变量是什么类型.然而做到这一点并非那么容易(特别是模板中),有时候根本做不到.为了解决这个问题,C++11新标准就引入了auto类型说明符,用它就能让编译器替我们去分析表达式所属的类型.和原来那些只对应某种特定的类型说明符(例如 int)不同.auto 让编译器通过初始值来进行类型推演.从而获得定义变量的类型,所以说 auto 定义的变量必须有初始

随机推荐