python 基于opencv实现图像增强

为了得到更加清晰的图像我们需要通过技术对图像进行处理,比如使用对比度增强的方法来处理图像,对比度增强就是对图像输出的灰度级放大到指定的程度,获得图像质量的提升。本文主要通过代码的方式,通过OpenCV的内置函数将图像处理到我们理想的结果。

灰度直方图

灰度直方图通过描述灰度级在图像矩阵中的像素个数来展示图像灰度级的信息,通过灰度直方图的统计我们可以看到每个灰度值的占有率。下面是一个灰度直方图的实现:

import cv2
import numpy as np
import sys
import matplotlib.pyplot as plt

#计算灰度直方图
def calcGrayHist(image):
  rows,clos = image.shape
  #创建一个矩阵用于存储灰度值
  grahHist = np.zeros([256],np.uint64)
  print('这是初始化矩阵')
  print(grahHist )
  for r in range(rows):
    for c in range(clos):
      #通过图像矩阵的遍历来将灰度值信息放入我们定义的矩阵中
      grahHist[image[r][c]] +=1
  print('这是赋值后的矩阵')
  print(grahHist)
  return grahHist
if __name__=="__main__":
  image = cv2.imread("../img/aa.jpg",cv2.IMREAD_GRAYSCALE)
  grahHist = calcGrayHist(image)
  x_range = range(256)
  plt.plot(x_range,grahHist,'-',linewidth= 3,c='k')
  #设置坐标轴的范围
  y_maxValue = np.max(grahHist)
  plt.axis([0,255,0,y_maxValue])
  #设置标签
  plt.xlabel('gray Level')
  plt.ylabel("number of pixels")
  #显示灰度直方图
  plt.show()

运行结果

线性变换

线性变换的公式为:

图像的线性变换无疑就是利用矩阵的乘法就行线性变换,比如一个矩阵I ,2I,3I (np.unt8 ndarry类型就是unt8类型)就是一个矩阵的变换.

import cv2
import numpy as np
import sys

if __name__=="__main__":
  img = cv2.imread("../img/ae.jpg",cv2.IMREAD_GRAYSCALE)
  a=2
  #线性变换 定义float类型
  O = float(a)*img
  #数据截取 如果大于255 取 255
  O[0>255] = 255
  #数据类型的转换
  O = np.round(O)
  O = O.astype(np.uint8)
  cv2.imshow("img",img)
  cv2.imshow('enhance',O)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

运行结果:

灰度级范围越大就代表对比度越高,反之对比度越低视觉上清晰度就越低。我们通过a=2的线性对比度拉伸将灰度级范围扩大到[0,255]之间,如上图我们改变灰度级的范围后图像变的清晰。

直方图正规化

将图像O中的最小灰度级记为OminOmin,最大灰度级记为OmaxOmax,假如输出的图像P的灰度级范围为[Pmin,PmaxPmin,Pmax],则O 与 P的关系为:

其中P(r,c)就代表P的第r行第c列的灰度值。这个过程就是直方图的正规化。我们一般令P的范围是[0,255],所以直方图的正规化是在求a,b变换的值的方法,我们可以得到:

下面我们使用OpenCV来实现上面的理论:

import cv2
import numpy as np
import sys
from enhance.GrayHist import mget
if __name__=="__main__":
  img = cv2.imread("../img/o3.jpg",cv2.IMREAD_GRAYSCALE)
  #求出img 的最大最小值
  Maximg = np.max(img)
  Minimg = np.min(img)
  print(Maximg, Minimg, '-----------')
  #输出最小灰度级和最大灰度级
  Omin,Omax = 0,255
  #求 a, b
  a = float(Omax - Omin)/(Maximg - Minimg)
  b = Omin - a*Minimg
  print(a,b,'-----------')
  #线性变换
  O = a*img + b
  O = O.astype(np.uint8)
  #利用灰度直方图进行比较 mget为GrayHist中的写方法
  mget(img)
  mget(O)

  cv2.imshow('img',img)
  cv2.imshow('enhance',O)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

伽玛变换

将一张图的灰度值归至[0,1]后,对于8位图来说,除以255即可。伽玛变换就是令O(r,c)=I(r,c)γI(r,c)γ,0≤r<H,0≤≤r<H,0≤c<W.
当γγ等于1时图像不发生变换,而当γγ大于0且小于1时就可以增强图像的对比度,相反的当γγ大于1时就可以使图像对比度降低。 以下是伽玛变换在OpenCV中的实现:

import cv2
import numpy as np
import sys

# 伽玛变换 power函数实现幂函数

if __name__ == "__main__":
  img = cv2.imread("../img/ae.jpg", cv2.IMREAD_GRAYSCALE)
  # 归1
  Cimg = img / 255
  # 伽玛变换
  gamma = 0.5
  O = np.power(Cimg,gamma)
  #效果
  cv2.imshow('img',img)
  cv2.imshow('O',O)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

运行结果:

直方图的均衡化

  • 计算图像的灰度直方图
  • 计算灰度直方图的累加直方图
  • 根据累加的直方图和直方图均衡化的原理得到输入灰度级与输出灰度级之间的映射关系
  • 使用循环的方式得到输出图像的每一个像素的灰度级
import cv2
import numpy as np
from enhance.GrayHist import calcGrayHist

#直方图的均衡化
if __name__ == "__main__":
  image = cv2.imread("../img/ae.jpg", cv2.IMREAD_GRAYSCALE)
  rows,cols = image.shape
  #计算灰度直方图
  grayHist = calcGrayHist(image)
  #计算累加灰度直方图
  zeroCumuMoment = np.zeros([256], np.uint32)
  for p in range(256):
    if p == 0:
      zeroCumuMoment[p] = grayHist[0]
    else:
      zeroCumuMoment[p] = zeroCumuMoment[p-1] + grayHist[p]
  #根据累加的灰度直方图得到输入与输出灰度级之间的映射关系
  output = np.zeros([256],np.uint8)
  cofficient = 256.0/(rows*cols)
  for p in range(256):
    q = cofficient * float(zeroCumuMoment[p])-1
    if q >=0:
      output[p] = np.math.floor(q)
    else:
      output[p] = 0
  #得出均衡化图像
  equalHistimg = np.zeros(image.shape,np.uint8)
  for r in range(rows):
    for c in range(cols):
      equalHistimg[r][c] = output[image[r][c]]
  cv2.imshow('image',image)
  cv2.imshow('histimage',equalHistimg)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

运行结果:

以上就是python 基于opencv实现图像增强的详细内容,更多关于python opencv的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python OpenCV中的numpy与图像类型转换操作

    Python OpenCV存储图像使用的是Numpy存储,所以可以将Numpy当做图像类型操作,操作之前还需进行类型转换,转换到int8类型 import cv2 import numpy as np # 使用numpy方式创建一个二维数组 img = np.ones((100,100)) # 转换成int8类型 img = np.int8(img) # 颜色空间转换,单通道转换成多通道, 可选可不选 img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2

  • python opencv肤色检测的实现示例

    1 椭圆肤色检测模型 原理:将RGB图像转换到YCRCB空间,肤色像素点会聚集到一个椭圆区域.先定义一个椭圆模型,然后将每个RGB像素点转换到YCRCB空间比对是否再椭圆区域,是的话判断为皮肤. YCRCB颜色空间 椭圆模型 代码 def ellipse_detect(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR)

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • Python + opencv对拍照得到的图片进行背景去除的实现方法

    有时候我们没办法得到pdf或者word文档,这个时候会使用手机或者相机进行拍照,往往会出现背景,打印出来就是灰色的或者有黑色的背景,这个时候影响视野观看,通过代码实现对背景去除,还原清晰图像.代码如下: #!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2020/11/17 19:06 # @Author : ptg # @Email : zhxwhchina@163.com # @File : 去背景.py # @Software:

  • python 用opencv实现图像修复和图像金字塔

    我们将学习如何通过一种称为修复的方法去除旧照片中的小噪音,笔画等.基本思路很简单:用相邻像素替换那些坏标记,使其看起来像邻域. cv2.inpaint() cv2.INPAINT_TELEA cv2.INPAINT_NS import numpy as np import cv2 as cv img = cv.imread('messi_2.jpg') mask = cv.imread('mask2.png',0) dst = cv.inpaint(img,mask,3,cv.INPAINT_T

  • 在树莓派2或树莓派B+上安装Python和OpenCV的教程

    我的Raspberry Pi 2昨天刚邮到,这家伙看上去很小巧可爱. 这小家伙有4核900MHZ的处理器,1G内存.要知道,Raspberry Pi 2 可比我中学电脑实验室里大多数电脑快多了. 话说,自从Raspberry Pi 2发布以来,我收到了很多请求,要求我能写一个在它上面安装OpenCV和Python的详细说明. 因此如果你想在Raspberry Pi启动运行OpenCV和Python,就往下面看! 在博文的剩余部分,我将提供在Raspberry Pi 2 和Raspberry Pi

  • python实现图像,视频人脸识别(opencv版)

    图片人脸识别 import cv2 filepath = "img/xingye-1.png" img = cv2.imread(filepath) # 读取图片 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器 classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haar

  • OpenCV+python实现膨胀和腐蚀的示例

    1,概念及原理: 膨胀(Dilating) (或) (1)将图像 A 与任意形状的内核 (B),通常为正方形或圆形,进行卷积. (2)内核 B 有一个可定义的 锚点, 通常定义为内核中心点. (3)进行膨胀操作时,将内核 B 划过图像A,将内核 B 覆盖区域的最大相素值提取,并代替锚点位置的相素.显然,这一最大化操作将会导致图像中的亮区开始"扩展" (因此有了术语膨胀 dilation ). 以3*3的内核为例: 腐蚀(Eroding) (与) (1)腐蚀在形态学操作家族里是膨胀操作的

  • Python+Opencv实现把图片、视频互转的示例

    1. 安装Opencv包 pip install opvencv-python 2.实现代码: 视频转为图片: import cv2 cap=cv2.VideoCapture('E:/video/video-02.mp4') # 获取一个视频打开cap isOpened=cap.isOpened # 判断是否打开 print(isOpened) fps=cap.get(cv2.CAP_PROP_FPS) print(fps) # 获取宽度 width=int(cap.get(cv2.CAP_PR

  • python 基于opencv 绘制图像轮廓

    图像轮廓概念 轮廓是一系列相连的点组成的曲线,代表了物体的基本外形. 谈起轮廓不免想到边缘,它们确实很像.简单的说,轮廓是连续的,边缘并不全都连续(下图).其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手:而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓. 寻找轮廓的操作一般用于二值图像,所以通常会使用阈值分割或Canny边缘检测先得到二值图. 注意:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一

随机推荐