详解Java实现数据结构之并查集

​一、什么是并查集

对于一种数据结构,肯定是有自己的应用场景和特性,那么并查集是处理什么问题的呢?

并查集是一种树型的数据结构,用于处理一些不相交集合(disjoint sets)的合并及查询问题,常常在使用中以森林来表示。在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。

你可能还有点迷糊并查集能怎么玩,看完这篇然后回头看这两个问题(分别杭电1232和杭电1272)。

问题1:

某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?

这个问题很容易,给定的关系看看需要合并多少次就知道最少的建设道路数量。

问题二:

小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。

这个问题也很容易了,根据关系集合进行合如果两个元素已经属于一个集合,那就说明不满足要求啦。

二、并查集解析

通过上面介绍,相信你已经清楚并查集就是解决集合中一些元素的合并和查询问题,现在就带你解析这个算法。

2.1、初始化

开始时候森林中每个元素没有任何操作,它们之间是相互独立的。我们通常会使用数组来表示这个森林(数组下标对应第几个元素),在初始化的时候数组中的各个值为-1,表示各自自己是一个集合(各自为王),你可能会问为啥是-1而不是一个其他的数,那是因为用负数可以代表这个元素是某个集合的根,然后它的权值表示集合中元素的个数。

2.2、并 union(int a,int b)

这里合并,并没有你想象的直接合并那么简单,这里合并是合并a所在的集合和b所在的集合,但在操作层面a,b可能并不是根节点,所以也要先判断一下。

为了便于理解,这里罗列一下最初操作可能的情况,初始时候各个元素都是独立的集合,那么直接a指向b(或者b指向a)即arr[a]=b,同时为了表示这个集合有多少个,原本-1的b再次-1.即arr[b]=-2.表示以b为父根的集合节点有|-2|个。例如进行union(1,4),union(5,7)操作之后如图所示:

正常情况的union(int a,int b),假设我们就是a合并到b上,把b当成父集合来看。a、b都可能是叶子节点,也可能是根节点。

此时你可以先分别找到a,b的父节点fa,fb(这个根可能是它自己),然后合并fa和fb两个节点,例如上面如果union(1,5)那么其实就是等价union(4,7)。

为什么不直接操作a,b而是要找到他们的父亲进行操作?

原因1是因为a,b可能是叶子节点,其值是正的表示已经有父亲了,如果直接操作会使其与原来的集合分离开。另外集合中的数量(负数)也不能有效叠加。

原因2是因为合并的时候如果合并如果a,b是非根节点操作,可能会造成这个树的深度太大,不利于集合a中的查询效率。

2.3、查 search(int a)

查询,其实就是查询这个节点的根节点是啥(也称代表元),这个过程也有点类似递归的过程,叶子节点值如果为正,那么就继续查找这个值得位置的结果,一直到值为负数的时候说明找到根节点,可以直接返回。

不过在查询的过程中可以顺便路径优化,这样在频繁查询能够大大降低时间复杂度。

三、优化

你以为上面的就是并查集的全部?不不不,并查集还有不少需要掌握嘞,估计细心的人可能也会发现一些问题。

你可能会有疑问:

如何查看a,b是否在同一个集合?

查看是否在一个集合,只需要查看节点根祖先的结果是否相同即可。因为只有根的数值是负的,而其他都是正数表示指向的元素。所以只需要一直寻找直到不为正数进行比较即可!

a,b合并,究竟是a的祖先合并在b的祖先上,还是b的祖先合并在a上?

这里会遇到两种情况,这个选择也是非常重要的。你要弄明白一点:树的高度+1的化那么整个元素查询的效率都会降低!

所以我们通常是:小树指向大树(或者低树指向高树),这个使得查询效率能够增加!

当然,在高度和数量的选择上,还需要你自己选择和考虑。

查找途中能不能路径压缩:

每次查询,自下向上。当我们调用递归的时候,可以顺便压缩路径(将当前数组的值等于递归返回的根节点的值),我们查找一个元素只需要直接找到它的祖先,所以当它距离祖先近那么下次查询就很快。并且压缩路径的代价并不大!

试想一下,如果一个分支的深度为1000,不压缩路径那么这个分支每个节点平均查找次数为500,压缩一次下次再查找就是1次。

学会路径压缩,你基本可以秒杀大部分并查集的题。

四、代码实现

并查集实现起来较为简单,直接贴代码!

import java.util.Scanner;
public class DisjointSet {
    static int tree[]=new int[100000];//假设有500个值
    public DisjointSet()    {set(this.tree);}
    public DisjointSet(int tree[])
    {
        this.tree=tree;
        set(this.tree);
    }
  //初始化所有都是-1 有两个好处,这样他们指向-1说明是自己,
  //第二,-1代表当前森林有-(-1)个
    public void set(int a[])
    {
        int l=a.length;
        for(int i=0;i<l;i++)
        {
            a[i]=-1;
        }
    }
    public int search(int a)//返回头节点的数值
    {
        if(tree[a]>0)//说明是子节点
        {
            return tree[a]=search(tree[a]);//路径压缩
        }
        else
            return a;
    }
    public int value(int a)//返回a所在树的大小(个数)
    {
        if(tree[a]>0)
        {
            return value(tree[a]);
        }
        else
            return -tree[a];
    }
    public void union(int a,int b)//表示 a,b所在的树合并
    {
        int a1=search(a);//a根
        int b1=search(b);//b根
        if(a1==b1) {System.out.println(a+"和"+b+"已经在一棵树上");}
        else {
        if(tree[a1]<tree[b1])//这个是负数,为了简单减少计算,不在调用value函数
        {
            tree[a1]+=tree[b1];//个数相加  注意是负数相加
            tree[b1]=a1;       //b树成为a的子树,直接指向a;
        }
        else
        {
            tree[b1]+=tree[a1];//个数相加  注意是负数相加
            tree[a1]=b1;       //b树成为a的子树,直接指向a;
        }
        }
    }
    public static void main(String[] args)
    {
        DisjointSet d=new DisjointSet();
        d.union(1,2);
        d.union(3,4);
        d.union(5,6);
        d.union(1,6);

        d.union(22,24);
        d.union(3,26);
        d.union(36,24);
        System.out.println(d.search(6));    //头
        System.out.println(d.value(6));     //大小
        System.out.println(d.search(22));   //头
        System.out.println(d.value(22));     //大小
    }
}

五、结语

并查集属于简单但是很高效率的数据结构。在集合中经常会遇到。如果不采用并查集而传统暴力效率太低,而不被采纳。

以上就是详解Java实现数据结构之并查集的详细内容,更多关于Java 数据结构 并查集的资料请关注我们其它相关文章!

(0)

相关推荐

  • java编程实现并查集的路径压缩代码详解

    首先看两张路径压缩的图片: 并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图.求最小生成树的 Kruskal 算法和求最近公共祖先(Least Common Ancestors, LCA)等. 使用并查集时,首先会存在一组不相交的动态集合 S={S 1 ,S 2 ,⋯,S k } ,一般都会使用一个整数表示集合中的一个元素. 每个集合可能包含一个或多个元素,并选出集合中的某个元素作为代表.每个集合中具体包含

  • Java实现快速并查集

    在一些应用的问题中,需将n个不同的元素划分成一组不相交的集合.开始时,每个元素自成一格单元素集合,然后按一定顺序将属于同一组的元素的集合合并.其间要反复用到查询某个元素属于哪个集合的运算.适合于描述这类问题的抽象数据类型称为并查集. 1. 并查集的概述 并查集的数学模型是一组不相交的动态集合的集合S={A,B,C,...},它支持以下的运算: (1)union(A,B):将集合A和B合并,其结果取名为A或B: (2)find(x):找出包含元素x的集合,并返回该集合的名字. 在并查集中需要两个类

  • Java实现并查集

    本文实例为大家分享了Java实现并查集的具体代码,供大家参考,具体内容如下 自下而上的树结构 接口 /** * @author Nino */ public interface UF { int size(); /** * 看两个元素是否相连 * @param p * @param q * @return */ boolean isConnected(int p, int q); /** * 将两个元素合并在一起,变成一个集合中的元素 * @param p * @param q */ void

  • Java使用HashMap实现并查集

    并查集的定义: 并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述. 并查集是一种树型的数

  • 详解Java实现数据结构之并查集

    ​一.什么是并查集 对于一种数据结构,肯定是有自己的应用场景和特性,那么并查集是处理什么问题的呢? 并查集是一种树型的数据结构,用于处理一些不相交集合(disjoint sets)的合并及查询问题,常常在使用中以森林来表示.在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受:即使在空

  • 详解Java数据库连接JDBC基础知识(操作数据库:增删改查)

    一.JDBC简介 JDBC是连接java应用程序和数据库之间的桥梁. 什么是JDBC? Java语言访问数据库的一种规范,是一套API. JDBC (Java Database Connectivity) API,即Java数据库编程接口,是一组标准的Java语言中的接口和类,使用这些接口和类,Java客户端程序可以访问各种不同类型的数据库.比如建立数据库连接.执行SQL语句进行数据的存取操作. JDBC代表Java数据库连接. JDBC库中所包含的API任务通常与数据库使用: 连接到数据库 创

  • 详解Java集合中的基本数据结构

    集合中三大数据结构 数组 内存地址连续 可以通过下标的成员访问,下标访问的性能高 增删操作有较大的性能消耗(需要动态扩容) 链表(双向链表) 灵活的空间要求,存储空间不要求连续 不支持下标访问,支持顺序遍历搜索 针对增删操作找到对应的节点改变链表的头尾指针指向即可,无需移动元数据存储位置 树(Java中二叉树特性) 某节点的左子树节点仅包含小于该节点的值 某节点的右子树节点仅包含大于该节点的值 节点必须是二叉树 顺序排列 存在问题:树可以认为是介于数组和链表二者之间的一种数据结构,拥有较快的查询

  • 详解Java数据结构之平衡二叉树

    目录 什么是二叉搜索树 平衡二叉搜索树 平衡二叉搜索树建树程序 计算每个节点的高度 计算每个节点的平衡因子 合并二叉树 旋转调整函数 整体代码 什么是二叉搜索树 简单来说,就是方便搜索的二叉树,是一种具备特定结构的二叉树,即,对于节点n,其左子树的所有节点的值都小于等于其值,其右子树的所有节点的值都大于等于其值.​ 以序列2,4,1,3,5,10,9,8为例,如果以二叉搜索树建树的方式,我们建立出来的逐个步骤应该为 第一步: 第二步: 第三步: 第四步: 第五步: 第六步: 第七步: 第八步:

  • 详解 Java HashMap 实现原理

    HashMap 是 Java 中最常见数据结构之一,它能够在 O(1) 时间复杂度存储键值对和根据键值读取值操作.本文将分析其内部实现原理(基于 jdk1.8.0_231). 数据结构 HashMap 是基于哈希值的一种映射,所谓映射,即可以根据 key 获取到相应的 value.例如:数组是一种的映射,根据下标能够取到值.不过相对于数组,HashMap 占用的存储空间更小,复杂度却同样为 O(1). HashMap 内部定义了一排"桶",用一个叫 table 的 Node 数组表示:

  • 详解Java中字典树(Trie树)的图解与实现

    目录 简介 工作过程 数据结构 初始化 构建字典树 应用 匹配有效单词 关键词提示 总结 简介 Trie又称为前缀树或字典树,是一种有序树,它是一种专门用来处理串匹配的数据结构,用来解决一组字符中快速查找某个字符串的问题.Google搜索的关键字提示功能相信大家都不陌生,我们在输入框中进行搜索的时候,会下拉出一系列候选关键词. 上面这个关键词提示功能,底层最基本的原理就是我们今天说的数据结构:Trie树 我们先看看Tire树长什么样子,以单纯的单词匹配为例,首先它是一棵多叉树结构,根节点是一个空

  • 详解Java中hashCode的作用

    详解Java中hashCode的作用 以下是关于HashCode的官方文档定义: hashcode方法返回该对象的哈希码值.支持该方法是为哈希表提供一些优点,例如,java.util.Hashtable 提供的哈希表. hashCode 的常规协定是: 在 Java 应用程序执行期间,在同一对象上多次调用 hashCode 方法时,必须一致地返回相同的整数,前提是对象上 equals 比较中所用的信息没有被修改.从某一应用程序的一次执行到同一应用程序的另一次执行,该整数无需保持一致. 如果根据

  • 详解Java的堆内存与栈内存的存储机制

    堆与内存优化     今天测了一个项目的数据自动整理功能,对数据库中几万条记录及图片进行整理操作,运行接近到最后,爆出了java.lang.outOfMemoryError,java heap space方面的错误,以前写程序很少遇到这种内存上的错误,因为java有垃圾回收器机制,就一直没太关注.今天上网找了点资料,在此基础上做了个整理.  一.堆和栈 堆-用new建立,垃圾回收器负责回收 1.程序开始运行时,JVM从OS获取一些内存,部分是堆内存.堆内存通常在存储地址的底层,向上排列. 2.堆

  • 详解Java中AbstractMap抽象类

    jdk1.8.0_144 下载地址:http://www.jb51.net/softs/551512.html AbstractMap抽象类实现了一些简单且通用的方法,本身并不难.但在这个抽象类中有两个方法非常值得关注,keySet和values方法源码的实现可以说是教科书式的典范. 抽象类通常作为一种骨架实现,为各自子类实现公共的方法.上一篇我们讲解了Map接口,此篇对AbstractMap抽象类进行剖析研究. Java中Map类型的数据结构有相当多,AbstractMap作为它们的骨架实现实

  • 详解JAVA类加载机制

    1.一段简单的代码 首先来一段代码,这个是单例模式,可能有的人不知道什么是单例模式,我就简单说一下 单例模式是指一个类有且只有一种对象实例.这里用的是饿汉式,还有懒汉式,双检锁等等.... 写这个是为了给大家看一个现象 class SingleTon{ public static int count1; public static int count2=0; private static SingleTon instance=new SingleTon(); public SingleTon()

随机推荐