python 写一个性能测试工具(一)

国庆重新学习了一下go的gin高性能测试框架。

用JMeter来测试gin与flask接口的性能,差别很大。

为什么我自己不尝试写一个性能工具,性能工具的核心就是 并发 和 请求。

请求可以选择Python的requests库。

并发可以通过python的 进程、线程、协程模拟。

这么一想,也不是很难了,上手撸一个。

依赖库

requests==2.22.0
gevent==20.9.0
numpy==1.19.2

requests 大家并不陌生,HTTP请求库。

gevent是python协程库,通过协程模拟并发更节省资源,在同样配置下能模拟更多的并发。

numpy 是python的数据计算库,提供大量组数和矩阵运算,这里用它求列表的平均值。

实现脚本

好了,接下来开始上手写代码了。

from __future__ import print_function
import time
import gevent
from gevent import monkey
monkey.patch_all()

import requests
from numpy import mean

users = 10 # 用户数
numbers = 100 # 请求次数
req_url = "http://127.0.0.1:8080/user/tom" # 请求URL

print("请求URL: {url}".format(url=req_url))

print("用户数:{},循环次数: {}".format(users, numbers))

print("============== Running ===================")

pass_number = 0
fail_number = 0

run_time_list = []

def running(url):
  global fail_number
  global pass_number
  for _ in range(numbers):
    start_time = time.time()
    r = requests.get(url)
    if r.status_code == 200:
      pass_number = pass_number + 1
      print(".", end="")
    else:
      fail_number = fail_number + 1
      print("F", end="")

    end_time = time.time()
    run_time = round(end_time - start_time, 4)
    run_time_list.append(run_time)

jobs = [gevent.spawn(running, req_url) for _url in range(users)]
gevent.wait(jobs)

print("\n============== Results ===================")
print("最大:    {} s".format(str(max(run_time_list))))
print("最小:    {} s".format(str(min(run_time_list))))
print("平均:    {} s".format(str(round(mean(run_time_list), 4))))
print("请求成功", pass_number)
print("请求失败", fail_number)
print("============== end ===================")

设计思路

在JMeter中创建线程组有两个参数 线程数和 循环数,即 用户数 和请求数,设置多少个用户,每个用户用户跑多少次,用户数通过协程模拟,每次用户运行次数通过for循环实现。

至于请求就比较简单了,直接通过requests发送请求。通过判断影响的状态码是否为200来判断是否成功,通过分别计算成功和失败的请求个数。

关于请求时间统计,在每次请求前后获得当前时间戳,然后计算时间差就是单个接口的调用时间。最大,最小,平均通过计算就可轻松的得到。

> python3 ab.py

请求URL: http://127.0.0.1:8080/user/tom
用户数:10,循环次数: 100
============== Running ===================
...............................................................................................................
...............................................................................................................
...............................................................................................................
...............................................................................................................
...............................................................................................................
...............................................................................................................
...............................................................................................................
...............................................................................................................
...............................................................................................................
.
============== Results ===================
最大:    0.0352 s
最小:    0.0036 s
平均:    0.0204 s
请求成功 1000
请求失败 0
============== end ===================

后续

把ab.py脚本做成 ab 命令行工具。

支持更多的请求类型(get/post/put/delete)和参数。

更多统计维度,吞吐量、吞吐率

增加启动时间,思考时间等

...

以上就是python 写一个性能测试工具(一)的详细内容,更多关于python 性能测试工具的资料请关注我们其它相关文章!

(0)

相关推荐

  • 详解python并发获取snmp信息及性能测试

    python & snmp 用python获取snmp信息有多个现成的库可以使用,其中比较常用的是netsnmp和pysnmp两个库.网上有较多的关于两个库的例子. 本文重点在于如何并发的获取snmp的数据,即同时获取多台机器的snmp信息. netsnmp 先说netsnmp.python的netsnmp,其实是来自于net-snmp包. python通过一个c文件调用net-snmp的接口获取数据. 因此,在并发获取多台机器的时候,不能够使用协程获取.因为使用协程,在get数据的时候,协程会

  • 通过python调用adb命令对App进行性能测试方式

    1 监听启动activity 信息命令adb shell logcat | grep START 可以查看apk包名和Activity名字 =========启动时间============ 2 冷启动(第一次启动)热启动(没有退出,第二次打开)命令 adb shell am start -W -n com.qihoo.appstore/.home.MainActivity 3 停止app命令(冷启动) adb shell am force-stop com.qihoo.appstore (热启

  • Python 3.6 性能测试框架Locust安装及使用方法(详解)

    背景 Python3.6 性能测试框架Locust的搭建与使用 基础 python版本:python3.6 开发工具:pycharm Locust的安装与配置 点击"File"→"setting" 点击"setting",进入设置窗口,选择"Project Interpreter" 点击"+" 输入需要"Locust",点击"Install Package" 安装完成

  • Python字符串通过'+'和join函数拼接新字符串的性能测试比较

    有一道Python面试题, 以下代码有什么局限性,要如何修改 def strTest(num): s = 'Hello' for i in range(num): s += 'x' return s 上面的代码其实可以看出:由于变量str是不变对象,每次遍历,Python都会生成新的str对象来存储新的字符串,所以num越大,创建的str对象就越多,内存消耗约大,速度越慢,性能越差. 如果要改变上面的问题,可以变字符串拼接为join联合的方式,代码如下: def strTest2(num): s

  • 在Python中使用异步Socket编程性能测试

    OK,首先写一个python socket的server段,对开放三个端口:10000,10001,10002.krondo的例子中是每个server绑定一个端口,测试的时候需要分别开3个shell,分别运行.这太麻烦了,就分别用三个Thread来运行这些services. import optparse import os import socket import time from threading import Thread import StringIO txt = '''1111 2

  • Python如何给你的程序做性能测试

    问题 你想测试你的程序运行所花费的时间并做性能测试. 解决方案 如果你只是简单的想测试下你的程序整体花费的时间, 通常使用Unix时间函数就行了,比如: bash % time python3 someprogram.py real 0m13.937s user 0m12.162s sys 0m0.098s bash % 如果你还需要一个程序各个细节的详细报告,可以使用 cProfile 模块: bash % python3 -m cProfile someprogram.py 859647 f

  • python 字典(dict)遍历的四种方法性能测试报告

    python中,遍历dict的方法有四种.但这四种遍历的性能如何呢?我做了如下的测试 l = [(x,x) for x in xrange(10000)] d = dict(l) from time import clock t0=clock() for i in d: t = i + d[i] t1=clock() for k,v in d.items(): t = k + v t2=clock() for k,v in d.iteritems(): t = k + v t3=clock()

  • Python内置数据类型list各方法的性能测试过程解析

    这篇文章主要介绍了Python内置数据类型list各方法的性能测试过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 测试环境 本文所涉及的代码均在MacOS系统与CentOS7下测试,使用的Python版本为3.6.8. 测试模块 测试用的模块是Python内置的timeit模块: timeit模块可以用来测试一小段Python代码的执行速度. Timer类 class timeit.Timer(stmt='pass', setup='p

  • 基于python locust库实现性能测试

    Locust(俗称 蝗虫), 一个轻量级的开源压测工具,用Python编写. 安装 pip3 install locust Python编写性能测试脚本 import json from locust import HttpLocust, TaskSet, task """ 创建后台管理站点压测类,需要继承TaskSet 可以添加多个测试任务 """ class AdminLoadTest(TaskSet): # 用户执行task前调用 def

  • 如何使用Python标准库进行性能测试

    Profile 和 cProfile 在 Python 标准库里面有两个模块可以用来做性能测试. 1. 一个是 Profile,它是一个纯 Python 的实现,所以会慢一些,如果你需要对模块进行拓展,那么这个模块比较合适. 2. 第二个是 cProfile,从名字就可以看出这是一个 C 语言的实现版,官方推荐在大多数情况下使用. 这两者的接口和数据的输出格式是完全一样的,你可以在这两者之间自由的切换,所以下面我们仅以 cProfile 为例进行介绍. 使用 cProfile 进行性能测试 在

  • python常用web框架简单性能测试结果分享(包含django、flask、bottle、tornado)

    测了一下django.flask.bottle.tornado 框架本身最简单的性能.对django的性能完全无语了. django.flask.bottle 均使用gunicorn+gevent启动,单进程,并且关闭DEBUG,请求均只返回一个字符串ok. tornado直接自己启动,其他内容一致. 测试软件为 siege,测试os为cenos6 64位,测试命令为: 复制代码 代码如下: siege -c 100 -r 100 -b http://127.0.0.1:5000/ django

随机推荐