SpringBoot Redis用注释实现接口限流详解

目录
  • 1. 准备工作
  • 2. 限流注解
  • 3. 定制 RedisTemplate
  • 4. 开发 Lua 脚本
  • 5. 注解解析
  • 6. 接口测试
  • 7. 全局异常处理

1. 准备工作

首先我们创建一个 Spring Boot 工程,引入 Web 和 Redis 依赖,同时考虑到接口限流一般是通过注解来标记,而注解是通过 AOP 来解析的,所以我们还需要加上 AOP 的依赖,最终的依赖如下:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-aop</artifactId>
</dependency>

然后提前准备好一个 Redis 实例,这里我们项目配置好之后,直接配置一下 Redis 的基本信息即可,如下:

spring.redis.host=localhost
spring.redis.port=6379
spring.redis.password=123

好啦,准备工作就算是到位了。

2. 限流注解

接下来我们创建一个限流注解,我们将限流分为两种情况:

  • 针对当前接口的全局性限流,例如该接口可以在 1 分钟内访问 100 次。
  • 针对某一个 IP 地址的限流,例如某个 IP 地址可以在 1 分钟内访问 100 次。

针对这两种情况,我们创建一个枚举类:

public enum LimitType {
    /**
     * 默认策略全局限流
     */
    DEFAULT,
    /**
     * 根据请求者IP进行限流
     */
    IP
}

接下来我们来创建限流注解:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface RateLimiter {
    /**
     * 限流key
     */
    String key() default "rate_limit:";
    /**
     * 限流时间,单位秒
     */
    int time() default 60;
    /**
     * 限流次数
     */
    int count() default 100;
    /**
     * 限流类型
     */
    LimitType limitType() default LimitType.DEFAULT;
}

第一个参数限流的 key,这个仅仅是一个前缀,将来完整的 key 是这个前缀再加上接口方法的完整路径,共同组成限流 key,这个 key 将被存入到 Redis 中。

另外三个参数好理解,我就不多说了。

好了,将来哪个接口需要限流,就在哪个接口上添加@RateLimiter注解,然后配置相关参数即可。

3. 定制 RedisTemplate

小伙伴们知道,在 Spring Boot 中,我们其实更习惯使用 Spring Data Redis 来操作 Redis,不过默认的 RedisTemplate 有一个小坑,就是序列化用的是 JdkSerializationRedisSerializer,不知道小伙伴们有没有注意过,直接用这个序列化工具将来存到 Redis 上的 key 和 value 都会莫名其妙多一些前缀,这就导致你用命令读取的时候可能会出错。

例如存储的时候,key 是 name,value 是 javaboy,但是当你在命令行操作的时候,get name却获取不到你想要的数据,原因就是存到 redis 之后 name 前面多了一些字符,此时只能继续使用 RedisTemplate 将之读取出来。

我们用 Redis 做限流会用到 Lua 脚本,使用 Lua 脚本的时候,就会出现上面说的这种情况,所以我们需要修改 RedisTemplate 的序列化方案。

可能有小伙伴会说”为什么不用 StringRedisTemplate 呢?”StringRedisTemplate 确实不存在上面所说的问题,但是它能够存储的数据类型不够丰富,所以这里不考虑。

修改 RedisTemplate 序列化方案,代码如下:

@Configuration
public class RedisConfig {
    @Bean
    public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory connectionFactory) {
        RedisTemplate<Object, Object> redisTemplate = new RedisTemplate<>();
        redisTemplate.setConnectionFactory(connectionFactory);
        // 使用Jackson2JsonRedisSerialize 替换默认序列化(默认采用的是JDK序列化)
        Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        redisTemplate.setKeySerializer(jackson2JsonRedisSerializer);
        redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);
        redisTemplate.setHashKeySerializer(jackson2JsonRedisSerializer);
        redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);
        return redisTemplate;
    }
}

这个其实也没啥好说的,key 和 value 我们都使用 Spring Boot 中默认的 jackson 序列化方式来解决。

4. 开发 Lua 脚本

Redis 中的一些原子操作我们可以借助 Lua 脚本来实现,想要调用 Lua 脚本,我们有两种不同的思路:

  • 在 Redis 服务端定义好 Lua 脚本,然后计算出来一个散列值,在 Java 代码中,通过这个散列值锁定要执行哪个 Lua 脚本。
  • 直接在 Java 代码中将 Lua 脚本定义好,然后发送到 Redis 服务端去执行。

Spring Data Redis 中也提供了操作 Lua 脚本的接口,还是比较方便的,所以我们这里就采用第二种方案。

我们在 resources 目录下新建 lua 文件夹专门用来存放 lua 脚本,脚本内容如下:

local key = KEYS[1]
local count = tonumber(ARGV[1])
local time = tonumber(ARGV[2])
local current = redis.call('get', key)
if current and tonumber(current) > count then
    return tonumber(current)
end
current = redis.call('incr', key)
if tonumber(current) == 1 then
    redis.call('expire', key, time)
end
return tonumber(current)

这个脚本其实不难,大概瞅一眼就知道干啥用的。KEYS 和 ARGV 都是一会调用时候传进来的参数,tonumber 就是把字符串转为数字,redis.call 就是执行具体的 redis 指令,具体流程是这样:

  • 首先获取到传进来的 key 以及 限流的 count 和时间 time。
  • 通过 get 获取到这个 key 对应的值,这个值就是当前时间窗内这个接口可以访问多少次。
  • 如果是第一次访问,此时拿到的结果为 nil,否则拿到的结果应该是一个数字,所以接下来就判断,如果拿到的结果是一个数字,并且这个数字还大于 count,那就说明已经超过流量限制了,那么直接返回查询的结果即可。
  • 如果拿到的结果为 nil,说明是第一次访问,此时就给当前 key 自增 1,然后设置一个过期时间。
  • 最后把自增 1 后的值返回就可以了。

其实这段 Lua 脚本很好理解。

接下来我们在一个 Bean 中来加载这段 Lua 脚本,如下:

@Bean
public DefaultRedisScript<Long> limitScript() {
    DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>();
    redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("lua/limit.lua")));
    redisScript.setResultType(Long.class);
    return redisScript;
}

我们的 Lua 脚本现在就准备好了。

5. 注解解析

接下来我们就需要自定义切面,来解析这个注解了,我们来看看切面的定义:

@Aspect
@Component
public class RateLimiterAspect {
    private static final Logger log = LoggerFactory.getLogger(RateLimiterAspect.class);
    @Autowired
    private RedisTemplate<Object, Object> redisTemplate;
    @Autowired
    private RedisScript<Long> limitScript;
    @Before("@annotation(rateLimiter)")
    public void doBefore(JoinPoint point, RateLimiter rateLimiter) throws Throwable {
        String key = rateLimiter.key();
        int time = rateLimiter.time();
        int count = rateLimiter.count();
        String combineKey = getCombineKey(rateLimiter, point);
        List<Object> keys = Collections.singletonList(combineKey);
        try {
            Long number = redisTemplate.execute(limitScript, keys, count, time);
            if (number==null || number.intValue() > count) {
                throw new ServiceException("访问过于频繁,请稍候再试");
            }
            log.info("限制请求'{}',当前请求'{}',缓存key'{}'", count, number.intValue(), key);
        } catch (ServiceException e) {
            throw e;
        } catch (Exception e) {
            throw new RuntimeException("服务器限流异常,请稍候再试");
        }
    }
    public String getCombineKey(RateLimiter rateLimiter, JoinPoint point) {
        StringBuffer stringBuffer = new StringBuffer(rateLimiter.key());
        if (rateLimiter.limitType() == LimitType.IP) {
            stringBuffer.append(IpUtils.getIpAddr(((ServletRequestAttributes) RequestContextHolder.currentRequestAttributes()).getRequest())).append("-");
        }
        MethodSignature signature = (MethodSignature) point.getSignature();
        Method method = signature.getMethod();
        Class<?> targetClass = method.getDeclaringClass();
        stringBuffer.append(targetClass.getName()).append("-").append(method.getName());
        return stringBuffer.toString();
    }
}

这个切面就是拦截所有加了@RateLimiter注解的方法,在前置通知中对注解进行处理。

  • 首先获取到注解中的 key、time 以及 count 三个参数。
  • 获取一个组合的 key,所谓的组合的 key,就是在注解的 key 属性基础上,再加上方法的完整路径,如果是 IP 模式的话,就再加上 IP 地址。以 IP 模式为例,最终生成的 key 类似这样:rate_limit:127.0.0.1-org.javaboy.ratelimiter.controller.HelloController-hello(如果不是 IP 模式,那么生成的 key 中就不包含 IP 地址)。
  • 将生成的 key 放到集合中。
  • 通过 redisTemplate.execute 方法取执行一个 Lua 脚本,第一个参数是脚本所封装的对象,第二个参数是 key,对应了脚本中的 KEYS,后面是可变长度的参数,对应了脚本中的 ARGV。
  • 将 Lua 脚本执行的结果与 count 进行比较,如果大于 count,就说明过载了,抛异常就行了。

好了,大功告成了。

6. 接口测试

接下来我们就进行接口的一个简单测试,如下:

@RestController
public class HelloController {
    @GetMapping("/hello")
    @RateLimiter(time = 5,count = 3,limitType = LimitType.IP)
    public String hello() {
        return "hello>>>"+new Date();
    }
}

每一个 IP 地址,在 5 秒内只能访问 3 次。

这个自己手动刷新浏览器都能测试出来。

7. 全局异常处理

由于过载的时候是抛异常出来,所以我们还需要一个全局异常处理器,如下:

@RestControllerAdvice
public class GlobalException {
    @ExceptionHandler(ServiceException.class)
    public Map<String,Object> serviceException(ServiceException e) {
        HashMap<String, Object> map = new HashMap<>();
        map.put("status", 500);
        map.put("message", e.getMessage());
        return map;
    }
}

这是一个小 demo,我就不去定义实体类了,直接用 Map 来返回 JSON 了。

好啦,大功告成。

最后我们看看过载时的测试效果:

好啦,这就是我们使用 Redis 做限流的方式。

到此这篇关于SpringBoot Redis用注释实现接口限流详解的文章就介绍到这了,更多相关SpringBoot Redis接口限流内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • SpingBoot中使用Redis对接口进行限流的实现

    目录 实现的思路 使用 Hash 存储接口的限流配置 使用普通kv,存储api的请求次数 使用SpringBoot实现 RedisKeys ObjectRedisTemplate RedisConfigration RequestLimitConfig RequestLimitInterceptor Controller WebMvcConfigration 最后一些问题 怎么灵活的配置 针对指定的用户限流 Restful 接口的问题 一个基于Redis实现的接口限流方案,先说要实现的功能 可以

  • Springboot+Redis实现API接口限流的示例代码

    添加Redis的jar包. <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> 在application.yml中配置redis spring: ## Redis redis: database: 0 host: 127.0.0.1 p

  • Springboot使用redis实现接口Api限流的实例

    前言 该篇介绍的内容如题,就是利用redis实现接口的限流(  某时间范围内 最大的访问次数 ) . 正文 惯例,先看下我们的实战目录结构: 首先是pom.xml 核心依赖: <!--用于redis数据库连接--> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId>

  • 使用SpringBoot + Redis 实现接口限流的方式

    目录 配置 限流注解 定制 RedisTemplate Lua 脚本 注解解析 接口测试 全局异常处理 Redis 除了做缓存,还能干很多很多事情:分布式锁.限流.处理请求接口幂等性...太多太多了 配置 首先我们创建一个 Spring Boot 工程,引入 Web 和 Redis 依赖,同时考虑到接口限流一般是通过注解来标记,而注解是通过 AOP 来解析的,所以我们还需要加上 AOP 的依赖,最终的依赖如下: <dependency> <groupId>org.springfra

  • SpringBoot Redis用注释实现接口限流详解

    目录 1. 准备工作 2. 限流注解 3. 定制 RedisTemplate 4. 开发 Lua 脚本 5. 注解解析 6. 接口测试 7. 全局异常处理 1. 准备工作 首先我们创建一个 Spring Boot 工程,引入 Web 和 Redis 依赖,同时考虑到接口限流一般是通过注解来标记,而注解是通过 AOP 来解析的,所以我们还需要加上 AOP 的依赖,最终的依赖如下: <dependency> <groupId>org.springframework.boot</g

  • 高并发系统的限流详解及实现

    在开发高并发系统时有三把利器用来保护系统:缓存.降级和限流.本文结合作者的一些经验介绍限流的相关概念.算法和常规的实现方式. 缓存 缓存比较好理解,在大型高并发系统中,如果没有缓存数据库将分分钟被爆,系统也会瞬间瘫痪.使用缓存不单单能够提升系统访问速度.提高并发访问量,也是保护数据库.保护系统的有效方式.大型网站一般主要是"读",缓存的使用很容易被想到.在大型"写"系统中,缓存也常常扮演者非常重要的角色.比如累积一些数据批量写入,内存里面的缓存队列(生产消费),以及

  • ASP.NET Core对不同类型的用户进行区别限流详解

    前言 老板提出了一个新需求,从某某天起,免费用户每天只能查询100次,收费用户100W次. 这是一个限流问题,聪明的你也一定想到了如何去做:记录用户每一天的查询次数,然后根据当前用户的类型使用不同的数字做比较,超过指定的数字就返回错误. 嗯,原理就是这么简单.不过真正写起来还要考虑更多问题: 统计数据的数据结构是什么样的?字典 or 行记录? 统计数据记录到哪里?内存 or MySQL or Redis? 分布式应用怎么精确计数?分布式锁 or 队列 or 事务? 吞吐量比较大时如何扛得住?内存

  • Java RateLimiter的限流详解

    目录 限流背景 限流相关概念 服务熔断 服务降级 服务隔离 服务限流 比较 常见的限流方法 限流工具类RateLimiter 总结 限流背景 在早期的计算机领域,限流技术(time limiting)被用做控制网络接口收发通信数据的速率.可以用来优化性能,减少延迟和提高带宽等.现在在互联网领域,也借鉴了这个概念,用来为服务控制请求的速率,如双十一的限流,12306的抢票等.即使在细粒度的软件架构中,也有类似的概念. 系统在使用下游资源时,需要考虑下游对资源受限,处理能力,在下游资源无法或者短时间

  • 基于SpringBoot+Redis的Session共享与单点登录详解

    前言 使用Redis来实现Session共享,其实网上已经有很多例子了,这是确保在集群部署中最典型的redis使用场景.在SpringBoot项目中,其实可以一行运行代码都不用写,只需要简单添加添加依赖和一行注解就可以实现(当然配置信息还是需要的). 然后简单地把该项目部署到不同的tomcat下,比如不同的端口(A.B),但项目访问路径是相同的.此时在A中使用set方法,然后在B中使用get方法,就可以发现B中可以获取A中设置的内容. 但如果就把这样的一个项目在多个tomcat中的部署说实现了单

  • SpringBoot使用自定义注解+AOP+Redis实现接口限流的实例代码

    目录 为什么要限流 限流背景 实现限流 1.引入依赖 2.自定义限流注解 3.限流切面 4.写一个简单的接口进行测试 5.全局异常拦截 6.接口测试 为什么要限流 系统在设计的时候,我们会有一个系统的预估容量,长时间超过系统能承受的TPS/QPS阈值,系统有可能会被压垮,最终导致整个服务不可用.为了避免这种情况,我们就需要对接口请求进行限流. 所以,我们可以通过对并发访问请求进行限速或者一个时间窗口内的的请求数量进行限速来保护系统或避免不必要的资源浪费,一旦达到限制速率则可以拒绝服务.排队或等待

  • Springboot使用redis进行api防刷限流过程详解

    这篇文章主要介绍了Springboot使用redis进行api防刷限流过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 api限流的场景 限流的需求出现在许多常见的场景中 秒杀活动,有人使用软件恶意刷单抢货,需要限流防止机器参与活动 某api被各式各样系统广泛调用,严重消耗网络.内存等资源,需要合理限流 淘宝获取ip所在城市接口.微信公众号识别微信用户等开发接口,免费提供给用户时需要限流,更具有实时性和准确性的接口需要付费. api限流实

  • SpringBoot如何使用自定义注解实现接口限流

    目录 使用自定义注解实现接口限流 1.自定义限流注解 2.限流类型枚举类 3.限流 Lua 脚本 4.限流切面处理类 5.使用与测试 SpringBoot工程中限流方式 1.google的guava,令牌桶算法实现限流 2.interceptor+redis根据注解限流 使用自定义注解实现接口限流 在高并发系统中,保护系统的三种方式分别为:缓存,降级和限流. 限流的目的是通过对并发访问请求进行限速或者一个时间窗口内的的请求数量进行限速来保护系统,一旦达到限制速率则可以拒绝服务.排队或等待. 1.

随机推荐