python 数据分析实现长宽格式的转换

我就废话不多说了,大家还是直接看代码吧!

# encoding=utf-8

import numpy as np
import pandas as pd

# 长宽格式的转换
# 1
data = pd.read_csv('d:data/macrodata.csv')
print 'data:=\n', data
print 'data.to_records():=\n', data.to_records()
print 'data.year:=\n', data.year
print 'data.quarter:=\n', data.quarter

periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date')
print 'periods:=\n', periods
data = pd.DataFrame(data.to_records(),
          columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'),
          index=periods.to_timestamp('D', 'end'))
print 'data:=\n', data
ldata = data.stack().reset_index().rename(columns={0: 'value'})
# print 'ldata:=\n', ldata
print 'ldata.get(\'realgdp\'):=\n', ldata.get('realgdp')
print 'ldata.get(\'unemp\'):=\n', ldata.get('unemp')
wdata = ldata.pivot('date', 'item', 'value')
print 'ldata:=\n', ldata
print 'wdata:=\n', wdata

# 2
print 'ldata[:10]:=\n', ldata[:10]
pivoted = ldata.pivot('date', 'item', 'value')
print 'pivoted:=\n', pivoted
print 'pivoted.head():=\n', pivoted.head()
print 'ldata:=\n', ldata
ldata['value2'] = np.random.randn(len(ldata))
print 'ldata[\'value2\']:=\n', ldata['value2']
print 'ldata[:10]:=\n', ldata[:10]
pivoted = ldata.pivot('date', 'item')
print 'pivoted:=\n', pivoted
print pivoted[:5]
print 'pivoted[\'value\'][:5]:=\n', pivoted['value'][:5]
print 'ldata:=\n', ldata
unstacked = ldata.set_index(['date', 'item']).unstack('item')
print 'unstacked:=\n', unstacked

print 'test'

补充知识:python使用_pandas_用stack和unstack进行行列重塑(key-value变宽表)

数据结构的重塑(reshape)

与数据库交互时常遇到堆叠格式(key-value)和宽表形式(dataframe)的转换,如:

堆叠格式:

宽表形式dataframe:

下面是相互转换的示例代码:

import pandas as pd
import numpy as np

# 常用的表格形式的数据结构
df = pd.DataFrame(np.arange(6).reshape((2,3)), index=['id1','id2'], columns=['attr1','attr2','attr3'])
print(df)
out:
  attr1 attr2 attr3
id1   0   1   2
id2   3   4   5

# 宽表形式(dataframe)转变为堆叠形式(key-value)形式
# 数据库中常以该形式存储
df_key_value = df.stack().reset_index()
df_key_value.columns = ['id', 'attr', 'value']
print(df_key_value)
out:
id	attr	value
0	id1	attr1	0
1	id1	attr2	1
2	id1	attr3	2
3	id2	attr1	3
4	id2	attr2	4
5	id2	attr3	5

# 堆叠转换为宽表形式

# 用set_index创建层次化索引,在用unstack重塑
# unstack中作为旋转轴的变量(如attr),其值会作为列变量展开
df_key_value.set_index(['id','attr']).unstack('attr')
out:
value
attr	attr1	attr2	attr3
id
id1	0	1	2
id2	3	4	5

# 多层索引转化为宽表
df_long = df_key_value.set_index(['id','attr']).unstack('attr')['value'].reset_index()
df_long
out:
attr	id	attr1	attr2	attr3
0	id1	0	1	2
1	id2	3	4	5

# 堆叠转换为宽表的快捷键---pivot
df_key_value.pivot('id','attr','value')
out:
attr	attr1	attr2	attr3
id
id1	0	1	2
id2	3	4	5

以上这篇python 数据分析实现长宽格式的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python常用数据类型之间的转换总结

    函数 描述 int(x [,base]) 将x转换为一个整数 long(x [,base] ) 将x转换为一个长整数 float(x) 将x转换到一个浮点数 complex(real [,imag]) 创建一个复数 str(x) 将对象 x 转换为字符串 repr(x) 将对象 x 转换为表达式字符串 eval(str) 用来计算在字符串中的有效Python表达式,并返回一个对象 tuple(s) 将序列 s 转换为一个元组 list(s) 将序列 s 转换为一个列表 set(s) 转换为可变集

  • python 数据分析实现长宽格式的转换

    我就废话不多说了,大家还是直接看代码吧! # encoding=utf-8 import numpy as np import pandas as pd # 长宽格式的转换 # 1 data = pd.read_csv('d:data/macrodata.csv') print 'data:=\n', data print 'data.to_records():=\n', data.to_records() print 'data.year:=\n', data.year print 'data

  • Python实战之多种音乐格式批量转换

    目录 1.安装 2.mp3转wav或其他格式 3.更加通用的转换函数 4.批量转化音频格式 Pydub是一个基于ffmpeg的Python音频处理模块,封装了许多ffmpeg底层接口,因此用它来做音乐歌曲文件格式转换会非常方便,如果你阅读过我们之前的文章:3行Python代码实现剪辑音乐 你就知道它有多么强大了. 今天给大家介绍它的音乐文件格式转换功能,几乎支持所有音乐音频格式,非常强大. 1.安装 安装Pydub前需要先安装ffmpeg: Mac (打开终端(Terminal), 用 home

  • Python实现图像尺寸和格式转换处理的示例详解

    实现代码 # batch_handle_image.py import argparse import glob import os from PIL import Image def main(args): limit_shortest = int(args.limitshortest) shortest_edge = int(args.shortestedge) longest_edge = int(args.longestedge) limit_width_or_height = int(

  • Python OpenCV实现传统图片格式与base64转换

    Base64是网络上最常见的用于传输8Bit字节码的编码方式之一,是一种基于64个可打印字符来表示二进制数据的方法.通过http传输图片常常将图片数据转换成base64之后再进行传输. Base64简介 Base64是网络上最常见的用于传输8Bit字节码的编码方式之一,Base64就是一种基于64个可打印字符来表示二进制数据的方法.可查看RFC2045-RFC2049,上面有MIME的详细规范. Base64编码是从二进制到字符的过程,可用于在HTTP环境下传递较长的标识信息.例如,在Java

  • 解决python将xml格式文件转换成txt文件的问题(xml.etree方法)

    概述 先来介绍一下xml格式的文件,从数据分析的角度去看xml格式的数据集,具有以下的优点开放性(能在任何平台上读取和处理数据,允许通过一些网络协议交换xml数据).简单性(纯文本,能在不同的系统之间交换数据).结构和内容分离(不同于HTML,数据的显示和数据本身是分开的).可扩展性(派生出其他标记语言) 问题描述 那么我们在进行数据分析的时候,如何运用xml里面的数据呢? 我们就需要将这类文件转化成其他类型的文件. (其实我认为说成提取xml的数据组成新的类型文件比较好一点) 就我个人的观点,

  • Python+Delorean实现时间格式智能转换

    目录 介绍 1.准备 2.Delorean 基础使用 3. Delorean 高级使用 介绍 DeLorean是一个Python的第三方模块,基于 pytz 和 dateutil 开发,用于处理Python中日期时间的格式转换. 由于时间转换是一个足够微妙的问题,DeLorean希望为移位.操作和生成日期时间提供一种更干净.更省事的解决方案.比如,实例化字符串形式的时间对象,Delorean只需要 parse 指定字符串,不需要声明其格式就可以进行转换. 至于 Delorean 这个模块名称的由

  • python实现通过pil模块对图片格式进行转换的方法

    本文实例讲述了python实现通过pil模块对图片格式进行转换的方法.分享给大家供大家参考.具体分析如下: python的pil模块相当的智能,如果你需要对图片格式进行转换,比如jpg转转成tif,jpg转换成gif,png转换成jpg只需要在保存文件时指定正确的图片扩展名即可. 代码如下: import Image im = Image.open('test.jpg') im.save('test.tiff') # or 'test.tif' 希望本文所述对大家的Python程序设计有所帮助.

  • Python基于pandas实现json格式转换成dataframe的方法

    本文实例讲述了Python基于pandas实现json格式转换成dataframe的方法.分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #!python3 import re import json from bs4 import BeautifulSoup import pandas as pd import requests import os from pandas.io.json import json_normalize class image_str

  • python获取时间及时间格式转换问题实例代码详解

    整理总结一下python中最常用的一些时间戳和时间格式的转换 第一部分:获取当前时间和10位13位时间戳 import datetime, time '''获取当前时间''' n = datetime.datetime.now() print(n) '''获取10位时间戳''' now = time.time() print(int(now)) '''获取13位时间戳''' now2 = round(now*1000) print(now2) 运行结果为: 2018-12-06 11:00:30

  • Python中xml和dict格式转换的示例代码

    在做接口自动化的时候,请求数据之前都是JSON格式的,Python有自带的包来解决.最近在做APP的接口,遇到XML格式的请求数据,费了很大劲来解决,解决方式是:接口文档拿到的是XML,在线转化为json格式(目的是拿到xml数据的模板),存放到json文件中,根据接口名去提取. github原文介绍:使用XML的Python模块感觉就像您在使用JSON 链接:https://github.com/martinblech/xmltodict 下载xmltodict(pip install xml

随机推荐