python中pandas库中DataFrame对行和列的操作使用方法示例

用pandas中的DataFrame时选取行或列:

import numpy as np
import pandas as pd
from pandas import Sereis, DataFrame

ser = Series(np.arange(3.))

data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))

data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型

data.w  #选择表格中的'w'列,使用点属性,返回的是Series类型

data[['w']] #选择表格中的'w'列,返回的是DataFrame类型

data[['w','z']] #选择表格中的'w'、'z'列

data[0:2] #返回第1行到第2行的所有行,前闭后开,包括前不包括后

data[1:2] #返回第2行,从0计,返回的是单行,通过有前后值的索引形式,
    #如果采用data[1]则报错

data.ix[1:2] #返回第2行的第三种方法,返回的是DataFrame,跟data[1:2]同

data['a':'b'] #利用index值进行切片,返回的是**前闭后闭**的DataFrame,
    #即末端是包含的 

#——————新版本pandas已舍弃该方法,用iloc代替———————
data.irow(0)  #取data的第一行
data.icol(0)  #取data的第一列

ser.iget_value(0) #选取ser序列中的第一个
ser.iget_value(-1) #选取ser序列中的最后一个,这种轴索引包含索引器的series不能采用ser[-1]去获取最后一个,这会引起歧义。
#————————————————————————————-----------------

data.head() #返回data的前几行数据,默认为前五行,需要前十行则data.head(10)
data.tail() #返回data的后几行数据,默认为后五行,需要后十行则data.tail(10)

data.iloc[-1]  #选取DataFrame最后一行,返回的是Series
data.iloc[-1:]  #选取DataFrame最后一行,返回的是DataFrame

data.loc['a',['w','x']]  #返回‘a'行'w'、'x'列,这种用于选取行索引列索引已知

data.iat[1,1]  #选取第二行第二列,用于已知行、列位置的选取。

下面是简单的例子使用验证:

import pandas as pd
from pandas import Series, DataFrame
import numpy as np

data = DataFrame(np.arange(15).reshape(3,5),index=['one','two','three'],columns=['a','b','c','d','e'])

data
Out[7]:
    a  b  c  d  e
one   0  1  2  3  4
two   5  6  7  8  9
three 10 11 12 13 14

#对列的操作方法有如下几种

data.icol(0)  #选取第一列
E:\Anaconda2\lib\site-packages\spyder\utils\ipython\start_kernel.py:1: FutureWarning: icol(i) is deprecated. Please use .iloc[:,i]
 # -*- coding: utf-8 -*-
Out[35]:
one    0
two    5
three  10
Name: a, dtype: int32

data['a']
Out[8]:
one    0
two    5
three  10
Name: a, dtype: int32

data.a
Out[9]:
one    0
two    5
three  10
Name: a, dtype: int32

data[['a']]
Out[10]:
    a
one   0
two   5
three 10

data.ix[:,[0,1,2]] #不知道列名只知道列的位置时
Out[13]:
    a  b  c
one   0  1  2
two   5  6  7
three 10 11 12

data.ix[1,[0]] #选择第2行第1列的值
Out[14]:
a  5
Name: two, dtype: int32

data.ix[[1,2],[0]]  #选择第2,3行第1列的值
Out[15]:
    a
two   5
three 10

data.ix[1:3,[0,2]] #选择第2-4行第1、3列的值
Out[17]:
    a  c
two   5  7
three 10 12

data.ix[1:2,2:4] #选择第2-3行,3-5(不包括5)列的值
Out[29]:
   c d
two 7 8

data.ix[data.a>5,3]
Out[30]:
three  13
Name: d, dtype: int32

data.ix[data.b>6,3:4] #选择'b'列中大于6所在的行中的第4列,有点拗口
Out[31]:
    d
three 13

data.ix[data.a>5,2:4] #选择'a'列中大于5所在的行中的第3-5(不包括5)列
Out[32]:
    c  d
three 12 13

data.ix[data.a>5,[2,2,2]] #选择'a'列中大于5所在的行中的第2列并重复3次
Out[33]:
    c  c  c
three 12 12 12

#还可以行数或列数跟行名列名混着用
data.ix[1:3,['a','e']]
Out[24]:
    a  e
two   5  9
three 10 14

data.ix['one':'two',[2,1]]
Out[25]:
   c b
one 2 1
two 7 6

data.ix[['one','three'],[2,2]]
Out[26]:
    c  c
one   2  2
three 12 12

data.ix['one':'three',['a','c']]
Out[27]:
    a  c
one   0  2
two   5  7
three 10 12

data.ix[['one','one'],['a','e','d','d','d']]
Out[28]:
   a e d d d
one 0 4 3 3 3
one 0 4 3 3 3

#对行的操作有如下几种:
data[1:2] #(不知道列索引时)选择第2行,不能用data[1],可以用data.ix[1]
Out[18]:
   a b c d e
two 5 6 7 8 9

data.irow(1)  #选取第二行
Out[36]:
a  5
b  6
c  7
d  8
e  9
Name: two, dtype: int32

data.ix[1]  #选择第2行
Out[20]:
a  5
b  6
c  7
d  8
e  9
Name: two, dtype: int32

data['one':'two'] #当用已知的行索引时为前闭后闭区间,这点与切片稍有不同。
Out[22]:
   a b c d e
one 0 1 2 3 4
two 5 6 7 8 9

data.ix[1:3] #选择第2到4行,不包括第4行,即前闭后开区间。
Out[23]:
    a  b  c  d  e
two   5  6  7  8  9
three 10 11 12 13 14

data.ix[-1:] #取DataFrame中最后一行,返回的是DataFrame类型,**注意**这种取法是有使用条件的,只有当行索引不是数字索引时才可以使用,否则可以选用`data[-1:]`--返回DataFrame类型或`data.irow(-1)`--返回Series类型
Out[11]:
    a  b  c  d  e
three 10 11 12 13 14

data[-1:] #跟上面一样,取DataFrame中最后一行,返回的是DataFrame类型
Out[12]:
    a  b  c  d  e
three 10 11 12 13 14

data.ix[-1] #取DataFrame中最后一行,返回的是Series类型,这个一样,行索引不能是数字时才可以使用
Out[13]:
a  10
b  11
c  12
d  13
e  14
Name: three, dtype: int32

data.tail(1)  #返回DataFrame中的最后一行
data.head(1)  #返回DataFrame中的第一行

最近处理数据时发现当pd.read_csv()数据时有时候会有读取到未命名的列,且该列也用不到,一般是索引列被换掉后导致的,有强迫症的看着难受,这时候dataframe.drop([columns,])是没法处理的,怎么办呢,

最笨的方法是直接给列索引重命名:

data6

    Unnamed: 0 high  symbol time
date
2016-11-01 0  3317.4 IF1611 18:10:44.8
2016-11-01 1  3317.4 IF1611 06:01:04.5
2016-11-01 2  3317.4 IF1611 07:46:25.5
2016-11-01 3  3318.4 IF1611 09:30:04.0
2016-11-01 4  3321.8 IF1611 09:31:04.0

data6.columns = list('abcd')

data6

  a  b  c  d
date
2016-11-01 0  3317.4 IF1611 18:10:44.8
2016-11-01 1  3317.4 IF1611 06:01:04.5
2016-11-01 2  3317.4 IF1611 07:46:25.5
2016-11-01 3  3318.4 IF1611 09:30:04.0
2016-11-01 4  3321.8 IF1611 09:31:04.0

重新命名后就可以用dataframe.drop([columns])来删除了,当然不用我这样全部给列名替换掉了,可以只是改变未命名的那个列,然后删除。不过这个用起来总是觉得有点low,有没有更好的方法呢,有,可以不去删除,直接:

data7 = data6.ix[:,1:]1

这样既不改变原有数据,也达到了删除神烦列,当然我这里时第0列删除,可以根据实际选择所在的列删除之,至于这个原理,可以看下前面的对列的操作。

github地址

到此这篇关于python中pandas库中DataFrame对行和列的操作使用方法示例的文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pandas DataFrame 行列索引及值的获取的方法

    pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: import pandas as pd df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]}) print df # 结果: A B 0 0 3 1 1 4 2 2 5 行索引自动生成了 0,1,2 如果要自己指定行索引和列索引,可以使用 index 和 column 参数: 这个数据是5个车站10天内的客流数据: ridership_df = pd

  • pandas对dataFrame中某一个列的数据进行处理的方法

    背景:dataFrame的数据,想对某一个列做逻辑处理,生成新的列,或覆盖原有列的值 下面例子中的df均为pandas.DataFrame()的数据 1.增加新列,或更改某列的值 df["列名"]=值 如果值为固定的一个值,则dataFrame中该列所有值均为这个数据 2.处理某列 df["列名"]=df.apply(lambda x:方法名(x,入参2),axis=1) 说明: 1.方法名为单独的方法名,可以处理传入的x数据 2.x为每一行的数据,做为方法的入参1

  • python pandas dataframe 按列或者按行合并的方法

    concat 与其说是连接,更准确的说是拼接.就是把两个表直接合在一起.于是有一个突出的问题,是横向拼接还是纵向拼接,所以concat 函数的关键参数是axis . 函数的具体参数是: concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verigy_integrity=False) objs 是需要拼接的对象集合,一般为列表或者字典 axis=0 是

  • pandas按行按列遍历Dataframe的几种方式

    遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按行遍历,将DataFrame的每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问. itertuples(): 按行遍历,将DataFrame的每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高. iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问. 示例

  • python中pandas.DataFrame对行与列求和及添加新行与列示例

    本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A

  • pandas DataFrame索引行列的实现

    python版本: 3.6 pandas版本: 0.23.4 行索引 索引行有三种方法,分别是 loc iloc ix import pandas as pd import numpy as np index = ["a", "b", "c", "d"] data = np.random.randint(10, size=(4, 3)) df = pd.DataFrame(data, index=index) "&q

  • pandas Dataframe行列读取的实例

    如下所示: import matplotlib.pyplot as plt import tkinter import numpy as np import pandas as pd from pandas import Series,DataFrame data = {'a':[1,2,3], 'c':[4,5,6], 'b':[7,8,9] } frame = DataFrame(data,index=['one','two','three']) print(frame) print(fra

  • pandas系列之DataFrame 行列数据筛选实例

    一.对DataFrame的认知 DataFrame的本质是行(index)列(column)索引+多列数据. 为了简化理解,我们不妨换个思路- 现实中,为了简化对一件事物的描述,我们会选择几个特征. 例如,从(性别.身高.学历.职业.爱好..)等角度去刻画一个人,这些"角度"即为"特征". 其中,不同的行表示不同的记录:列代表特征,不同记录因各个特征之间的差异而不同. DataFrame默认索引是序号(0,1,2-),可以理解成位置索引.一般我们用id标识不同记录,

  • Python中pandas dataframe删除一行或一列:drop函数详解

    用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 在这里默认:axis=0,指删除index,因此删除columns时要指定axis=1: inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新dataframe: inplace=True,则会直接在原数据上进行删除操作,删除后就回不来了. 例子: >>>df = pd.DataFrame(np.a

  • Pandas DataFrame数据的更改、插入新增的列和行的方法

    一.更改DataFrame的某些值 1.更改DataFrame中的数据,原理是将这部分数据提取出来,重新赋值为新的数据. 2.需要注意的是,数据更改直接针对DataFrame原数据更改,操作无法撤销,如果做出更改,需要对更改条件做确认或对数据进行备份. 代码: import pandas as pd df1 = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['

  • 用pandas中的DataFrame时选取行或列的方法

    如下所示: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型 data.w #选择表格

  • python pandas库中DataFrame对行和列的操作实例讲解

    用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是S

  • pandas.DataFrame删除/选取含有特定数值的行或列实例

    1.删除/选取某列含有特殊数值的行 import pandas as pd import numpy as np a=np.array([[1,2,3],[4,5,6],[7,8,9]]) df1=pd.DataFrame(a,index=['row0','row1','row2'],columns=list('ABC')) print(df1) df2=df1.copy() #删除/选取某列含有特定数值的行 #df1=df1[df1['A'].isin([1])] #df1[df1['A'].

随机推荐