基于PyTorch实现一个简单的CNN图像分类器

pytorch中文网:https://www.pytorchtutorial.com/
pytorch官方文档:https://pytorch.org/docs/stable/index.html

一. 加载数据

Pytorch的数据加载一般是用torch.utils.data.Dataset与torch.utils.data.Dataloader两个类联合进行。我们需要继承Dataset来定义自己的数据集类,然后在训练时用Dataloader加载自定义的数据集类。

1. 继承Dataset类并重写关键方法

pytorch的dataset类有两种:Map-style datasets和Iterable-style datasets。前者是我们常用的结构,而后者是当数据集难以(或不可能)进行随机读取时使用。在这里我们实现Map-style dataset。
继承torch.utils.data.Dataset后,需要重写的方法有:__len__与__getitem__方法,其中__len__方法需要返回所有数据的数量,而__getitem__则是要依照给出的数据索引获取对应的tensor类型的Sample,除了这两个方法以外,一般还需要实现__init__方法来初始化一些变量。话不多说,直接上代码。

'''
包括了各种数据集的读取处理,以及图像相关处理方法
'''
from torch.utils.data import Dataset
import torch
import os
import cv2
from Config import mycfg
import random
import numpy as np

class ImageClassifyDataset(Dataset):
    def __init__(self, imagedir, labelfile, classify_num, train=True):
    	'''
    	这里进行一些初始化操作。
    	'''
        self.imagedir = imagedir
        self.labelfile = labelfile
        self.classify_num = classify_num
        self.img_list = []
        # 读取标签
        with open(self.labelfile, 'r') as fp:
            lines = fp.readlines()
            for line in lines:
                filepath = os.path.join(self.imagedir, line.split(";")[0].replace('\\', '/'))
                label = line.split(";")[1].strip('\n')
                self.img_list.append((filepath, label))
        if not train:
            self.img_list = random.sample(self.img_list, 50)

    def __len__(self):
        return len(self.img_list)

    def __getitem__(self, item):
	    '''
	    这个函数是关键,通过item(索引)来取数据集中的数据,
	    一般来说在这里才将图像数据加载入内存,之前存的是图像的保存路径
	    '''
        _int_label = int(self.img_list[item][1])	# label直接用0,1,2,3,4...表示不同类别
        label = torch.tensor(_int_label,dtype=torch.long)
        img = self.ProcessImgResize(self.img_list[item][0])
        return img, label

    def ProcessImgResize(self, filename):
    	'''
    	对图像进行一些预处理
    	'''
        _img = cv2.imread(filename)
        _img = cv2.resize(_img, (mycfg.IMG_WIDTH, mycfg.IMG_HEIGHT), interpolation=cv2.INTER_CUBIC)
        _img = _img.transpose((2, 0, 1))
        _img = _img / 255
        _img = torch.from_numpy(_img)
        _img = _img.to(torch.float32)
        return _img

有一些的数据集类一般还会传入一个transforms函数来构造一个图像预处理序列,传入transforms函数的一个好处是作为参数传入的话可以对一些非本地数据集中的数据进行操作(比如直接通过torchvision获取的一些预存数据集CIFAR10等等),除此之外就是torchvision.transforms里面有一些预定义的图像操作函数,可以直接像拼积木一样拼成一个图像处理序列,很方便。我这里因为是用我自己下载到本地的数据集,而且比较简单就直接用自己的函数来操作了。

2. 使用Dataloader加载数据

实例化自定义的数据集类ImageClassifyDataset后,将其传给DataLoader作为参数,得到一个可遍历的数据加载器。可以通过参数batch_size控制批处理大小,shuffle控制是否乱序读取,num_workers控制用于读取数据的线程数量。

from torch.utils.data import DataLoader
from MyDataset import ImageClassifyDataset

dataset = ImageClassifyDataset(imagedir, labelfile, 10)
dataloader = DataLoader(dataset, batch_size=5, shuffle=True,num_workers=5)
for index, data in enumerate(dataloader):
	print(index)	# batch索引
	print(data)		# 一个batch的{img,label}

二. 模型设计

在这里只讨论深度学习模型的设计,pytorch中的网络结构是一层一层叠出来的,pytorch中预定义了许多可以通过参数控制的网络层结构,比如Linear、CNN、RNN、Transformer等等具体可以查阅官方文档中的torch.nn部分。
设计自己的模型结构需要继承torch.nn.Module这个类,然后实现其中的forward方法,一般在__init__中设定好网络模型的一些组件,然后在forward方法中依据输入输出顺序拼装组件。

'''
包括了各种模型、自定义的loss计算方法、optimizer
'''
import torch.nn as nn

class Simple_CNN(nn.Module):
    def __init__(self, class_num):
        super(Simple_CNN, self).__init__()
        self.class_num = class_num
        self.conv1 = nn.Sequential(
            nn.Conv2d(		# input: 3,400,600
                in_channels=3,
                out_channels=8,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            nn.Conv2d(
                in_channels=8,
                out_channels=16,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            nn.AvgPool2d(2),  # 16,400,600 --> 16,200,300
            nn.BatchNorm2d(16),
            nn.LeakyReLU(),
            nn.Conv2d(
                in_channels=16,
                out_channels=16,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            nn.Conv2d(
                in_channels=16,
                out_channels=8,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            nn.AvgPool2d(2),  # 8,200,300 --> 8,100,150
            nn.BatchNorm2d(8),
            nn.LeakyReLU(),
            nn.Conv2d(
                in_channels=8,
                out_channels=8,
                kernel_size=3,
                stride=1,
                padding=1
            ),
            nn.Conv2d(
                in_channels=8,
                out_channels=1,
                kernel_size=3,
                stride=1,
                padding=1
            ),
            nn.AvgPool2d(2),  # 1,100,150 --> 1,50,75
            nn.BatchNorm2d(1),
            nn.LeakyReLU()
        )
        self.line = nn.Sequential(
            nn.Linear(
                in_features=50 * 75,
                out_features=self.class_num
            ),
            nn.Softmax()
        )

    def forward(self, x):
        x = self.conv1(x)
        x = x.view(-1, 50 * 75)
        y = self.line(x)
        return y

上面我定义的模型中包括卷积组件conv1和全连接组件line,卷积组件中包括了一些卷积层,一般是按照{卷积层、池化层、激活函数}的顺序拼接,其中我还在激活函数之前添加了一个BatchNorm2d层对上层的输出进行正则化以免传入激活函数的值过小(梯度消失)或过大(梯度爆炸)。
在拼接组件时,由于我全连接层的输入是一个一维向量,所以需要将卷积组件中最后的50 × 75 50\times 7550×75大小的矩阵展平成一维的再传入全连接层(x.view(-1,50*75))

三. 训练

实例化模型后,网络模型的训练需要定义损失函数与优化器,损失函数定义了网络输出与标签的差距,依据不同的任务需要定义不同的合适的损失函数,而优化器则定义了神经网络中的参数如何基于损失来更新,目前神经网络最常用的优化器就是SGD(随机梯度下降算法) 及其变种。
在我这个简单的分类器模型中,直接用的多分类任务最常用的损失函数CrossEntropyLoss()以及优化器SGD。

self.cnnmodel = Simple_CNN(mycfg.CLASS_NUM)
self.criterion = nn.CrossEntropyLoss()	# 交叉熵,标签应该是0,1,2,3...的形式而不是独热的
self.optimizer = optim.SGD(self.cnnmodel.parameters(), lr=mycfg.LEARNING_RATE, momentum=0.9)

训练过程其实很简单,使用dataloader依照batch读出数据后,将input放入网络模型中计算得到网络的输出,然后基于标签通过损失函数计算Loss,并将Loss反向传播回神经网络(在此之前需要清理上一次循环时的梯度),最后通过优化器更新权重。训练部分代码如下:

for each_epoch in range(mycfg.MAX_EPOCH):
            running_loss = 0.0
            self.cnnmodel.train()
            for index, data in enumerate(self.dataloader):
                inputs, labels = data
                outputs = self.cnnmodel(inputs)
                loss = self.criterion(outputs, labels)

                self.optimizer.zero_grad()	# 清理上一次循环的梯度
                loss.backward()	# 反向传播
                self.optimizer.step()	# 更新参数
                running_loss += loss.item()
                if index % 200 == 199:
                    print("[{}] loss: {:.4f}".format(each_epoch, running_loss/200))
                    running_loss = 0.0
            # 保存每一轮的模型
            model_name = 'classify-{}-{}.pth'.format(each_epoch,round(all_loss/all_index,3))
            torch.save(self.cnnmodel,model_name)	# 保存全部模型

四. 测试

测试和训练的步骤差不多,也就是读取模型后通过dataloader获取数据然后将其输入网络获得输出,但是不需要进行反向传播的等操作了。比较值得注意的可能就是准确率计算方面有一些小技巧。

acc = 0.0
count = 0
self.cnnmodel = torch.load('mymodel.pth')
self.cnnmodel.eval()
for index, data in enumerate(dataloader_eval):
	inputs, labels = data   # 5,3,400,600  5,10
	count += len(labels)
	outputs = cnnmodel(inputs)
	_,predict = torch.max(outputs, 1)
	acc += (labels == predict).sum().item()
print("[{}] accurancy: {:.4f}".format(each_epoch, acc / count))

我这里采用的是保存全部模型并加载全部模型的方法,这种方法的好处是在使用模型时可以完全将其看作一个黑盒,但是在模型比较大时这种方法会很费事。此时可以采用只保存参数不保存网络结构的方法,在每一次使用模型时需要读取参数赋值给已经实例化的模型:

torch.save(cnnmodel.state_dict(), "my_resnet.pth")
cnnmodel = Simple_CNN()
cnnmodel.load_state_dict(torch.load("my_resnet.pth"))

结语

至此整个流程就说完了,是一个小白级的图像分类任务流程,因为前段时间一直在做android方面的事,所以有点生疏了,就写了这篇博客记录一下,之后应该还会写一下seq2seq以及image caption任务方面的模型构造与训练过程,完整代码之后也会统一放到github上给大家做参考。

以上就是基于PyTorch实现一个简单的CNN图像分类器的详细内容,更多关于PyTorch实现CNN图像分类器的资料请关注我们其它相关文章!

(0)

相关推荐

  • 用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

    听说pytorch使用比TensorFlow简单,加之pytorch现已支持windows,所以今天装了pytorch玩玩,第一件事还是写了个简单的CNN在MNIST上实验,初步体验的确比TensorFlow方便. 参考代码(在莫烦python的教程代码基础上修改)如下: import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import tor

  • pytorch cnn 识别手写的字实现自建图片数据

    本文主要介绍了pytorch cnn 识别手写的字实现自建图片数据,分享给大家,具体如下: # library # standard library import os # third-party library import torch import torch.nn as nn from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader import torchvision impo

  • pytorch实现CNN卷积神经网络

    本文为大家讲解了pytorch实现CNN卷积神经网络,供大家参考,具体内容如下 我对卷积神经网络的一些认识 卷积神经网络是时下最为流行的一种深度学习网络,由于其具有局部感受野等特性,让其与人眼识别图像具有相似性,因此被广泛应用于图像识别中,本人是研究机械故障诊断方面的,一般利用旋转机械的振动信号作为数据. 对一维信号,通常采取的方法有两种,第一,直接对其做一维卷积,第二,反映到时频图像上,这就变成了图像识别,此前一直都在利用keras搭建网络,最近学了pytroch搭建cnn的方法,进行一下代码

  • pytorch实现textCNN的具体操作

    1. 原理 2014年的一篇文章,开创cnn用到文本分类的先河. Convolutional Neural Networks for Sentence Classification 原理说简单也简单,其实就是单层CNN加个全连接层: 不过与图像中的cnn相比,改动为将卷积核的宽固定为一个词向量的维度,而长度一般取2,3,4,5这样. 上图中第一幅图的每个词对应的一行为一个词向量,可以使用word2vec或者glove预训练得到.本例中使用随机初始化的向量. 2. 数据预处理 手中有三个文件,分别

  • pytorch + visdom CNN处理自建图片数据集的方法

    环境 系统:win10 cpu:i7-6700HQ gpu:gtx965m python : 3.6 pytorch :0.3 数据下载 来源自Sasank Chilamkurthy 的教程: 数据:下载链接. 下载后解压放到项目根目录: 数据集为用来分类 蚂蚁和蜜蜂.有大约120个训练图像,每个类有75个验证图像. 数据导入 可以使用 torchvision.datasets.ImageFolder(root,transforms) 模块 可以将 图片转换为 tensor. 先定义transf

  • PyTorch上实现卷积神经网络CNN的方法

    一.卷积神经网络 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在

  • Pytorch 使用CNN图像分类的实现

    需求 在4*4的图片中,比较外围黑色像素点和内圈黑色像素点个数的大小将图片分类 如上图图片外围黑色像素点5个大于内圈黑色像素点1个分为0类反之1类 想法 通过numpy.PIL构造4*4的图像数据集 构造自己的数据集类 读取数据集对数据集选取减少偏斜 cnn设计因为特征少,直接1*1卷积层 或者在4*4外围添加padding成6*6,设计2*2的卷积核得出3*3再接上全连接层 代码 import torch import torchvision import torchvision.transf

  • Pytorch mask-rcnn 实现细节分享

    DataLoader Dataset不能满足需求需自定义继承torch.utils.data.Dataset时需要override __init__, __getitem__, __len__ ,否则DataLoader导入自定义Dataset时缺少上述函数会导致NotImplementedError错误 Numpy 广播机制: 让所有输入数组都向其中shape最长的数组看齐,shape中不足的部分都通过在前面加1补齐 输出数组的shape是输入数组shape的各个轴上的最大值 如果输入数组的某

  • pytorch实现用CNN和LSTM对文本进行分类方式

    model.py: #!/usr/bin/python # -*- coding: utf-8 -*- import torch from torch import nn import numpy as np from torch.autograd import Variable import torch.nn.functional as F class TextRNN(nn.Module): """文本分类,RNN模型""" def __ini

  • PyTorch CNN实战之MNIST手写数字识别示例

    简介 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的. 卷积神经网络CNN的结构一般包含这几个层: 输入层:用于数据的输入 卷积层:使用卷积核进行特征提取和特征映射 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 池化层:进行下采样,对特征图稀疏处理,减少数据运算量. 全连接层:通常在CNN的尾部进行重新拟合,减

  • 在Pytorch中使用Mask R-CNN进行实例分割操作

    在这篇文章中,我们将讨论mask R-CNN背后的一些理论,以及如何在PyTorch中使用预训练的mask R-CNN模型. 1.语义分割.目标检测和实例分割 之前已经介绍过: 1.语义分割:在语义分割中,我们分配一个类标签(例如.狗.猫.人.背景等)对图像中的每个像素. 2.目标检测:在目标检测中,我们将类标签分配给包含对象的包围框. 一个非常自然的想法是把两者结合起来.我们只想在一个对象周围识别一个包围框,并且找到包围框中的哪些像素属于对象. 换句话说,我们想要一个掩码,它指示(使用颜色或灰

随机推荐