pytorch 如何自定义卷积核权值参数

pytorch中构建卷积层一般使用nn.Conv2d方法,有些情况下我们需要自定义卷积核的权值weight,而nn.Conv2d中的卷积参数是不允许自定义的,此时可以使用torch.nn.functional.conv2d简称F.conv2d

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

F.conv2d可以自己输入且也必须要求自己输入卷积权值weight和偏置bias。因此,构建自己想要的卷积核参数,再输入F.conv2d即可。

下面是一个用F.conv2d构建卷积层的例子

这里为了网络模型需要写成了一个类:

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.weight = nn.Parameter(torch.randn(16, 1, 5, 5))  # 自定义的权值
        self.bias = nn.Parameter(torch.randn(16))    # 自定义的偏置

    def forward(self, x):
        x = x.view(x.size(0), -1)
        out = F.conv2d(x, self.weight, self.bias, stride=1, padding=0)
        return out

值得注意的是,pytorch中各层需要训练的权重的数据类型设为nn.Parameter,而不是Tensor或者Variable。parameter的require_grad默认设置为true,而Varaible默认设置为False。

补充:pytorch中卷积参数的理解

上图链接

kernel_size代表着卷积核,例如kernel_size=3或kernel_size=(3,7);

stride:表明卷积核在像素级图像上行走的步长,如图2,步长为1;

padding:为上下左右填充的大小,例如padding=0/1/(1,1)/(1,3),

padding=0 不填充;

padding=1/(1,1) 上下左右分别填充1个格;

padding=(1,3) 高(上下)填充2个格,宽(左右)填充6个格;

卷积代码

torch.nn.Conv2d(512,512,kernel_size=(3,7),stride=2,padding=1)

指定输出形状的上采样

def upsample_add(self,x,y):
        _,_,H,W = y.size()
        return F.interpolate(x, size=(H,W), mode='bilinear', align_corners=False) + y

反卷积上采样

output_shape_w=kernel_size_w+(output_w-1)(kernel_size_w-1)+2padding
self.upscore2 = nn.ConvTranspose2d(
            512, 1, kernel_size=3, stride=2,padding=0, bias=False)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 在Pytorch中计算卷积方法的区别详解(conv2d的区别)

    在二维矩阵间的运算: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 对由多个特征平面组成的输入信号进行2D的卷积操作.详解 torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

  • Pytorch之卷积层的使用详解

    1.简介(torch.nn下的) 卷积层主要使用的有3类,用于处理不同维度的数据 参数 Parameters: in_channels(int) – 输入信号的通道 out_channels(int) – 卷积产生的通道 kerner_size(int or tuple) - 卷积核的尺寸 stride(int or tuple, optional) - 卷积步长 padding (int or tuple, optional)- 输入的每一条边补充0的层数 dilation(int or tu

  • pytorch中的卷积和池化计算方式详解

    TensorFlow里面的padding只有两个选项也就是valid和same pytorch里面的padding么有这两个选项,它是数字0,1,2,3等等,默认是0 所以输出的h和w的计算方式也是稍微有一点点不同的:tf中的输出大小是和原来的大小成倍数关系,不能任意的输出大小:而nn输出大小可以通过padding进行改变 nn里面的卷积操作或者是池化操作的H和W部分都是一样的计算公式:H和W的计算 class torch.nn.MaxPool2d(kernel_size, stride=Non

  • pytorch 如何自定义卷积核权值参数

    pytorch中构建卷积层一般使用nn.Conv2d方法,有些情况下我们需要自定义卷积核的权值weight,而nn.Conv2d中的卷积参数是不允许自定义的,此时可以使用torch.nn.functional.conv2d简称F.conv2d torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) F.conv2d可以自己输入且也必须要求自己输入卷积权值weig

  • pytorch 自定义卷积核进行卷积操作方式

    一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 通过上面的输入发现想自定义自己的卷积核,比如高斯核,发现是行不通的,因为上面的参数里面只有卷积核尺寸,而权值weight是通过梯度一直更新的,是不确定的.

  • pytorch权值初始化weight initilzation

    目录 pytorch中的权值初始化 pytorch中的权值初始化 官方论坛对weight-initilzation的讨论 torch.nn.Module.apply(fn) torch.nn.Module.apply(fn) # 递归的调用weights_init函数,遍历nn.Module的submodule作为参数 # 常用来对模型的参数进行初始化 # fn是对参数进行初始化的函数的句柄,fn以nn.Module或者自己定义的nn.Module的子类作为参数 # fn (Module ->

  • Pytorch卷积层手动初始化权值的实例

    由于研究关系需要自己手动给卷积层初始化权值,但是好像博客上提到的相关文章比较少(大部分都只提到使用nn.init里的按照一定分布初始化方法),自己参考了下Pytorch的官方文档,发现有两种方法吧. 所以mark下. import torch import torch.nn as nn import torch.optim as optim import numpy as np # 第一一个卷积层,我们可以看到它的权值是随机初始化的 w=torch.nn.Conv2d(2,2,3,padding

  • Pytorch 实现自定义参数层的例子

    注意,一般官方接口都带有可导功能,如果你实现的层不具有可导功能,就需要自己实现梯度的反向传递. 官方Linear层: class Linear(Module): def __init__(self, in_features, out_features, bias=True): super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Pa

  • Python中自定义函方法与参数具有默认值的函数

    目录 一.Python中自定义函数的方法 1自定义函数的语法 2自定义函数的实现 3自定义函数的调用 二.Python中参数具有默认值的函数 1参数是常量默认值的函数 2参数是常量默认值的函数 一.Python中自定义函数的方法 在Python编程中,可以使用已经定义好的函数,也可以自定义函数实现某些特殊的功能. 1 自定义函数的语法 在Python中,自定义函数的语法如下所示: def 函数名(参数):     函数体 其中,def是关键字:之后跟的是函数名,通过函数名来调用该函数:函数名之后

  • 对Tensorflow中权值和feature map的可视化详解

    前言 Tensorflow中可以使用tensorboard这个强大的工具对计算图.loss.网络参数等进行可视化.本文并不涉及对tensorboard使用的介绍,而是旨在说明如何通过代码对网络权值和feature map做更灵活的处理.显示和存储.本文的相关代码主要参考了github上的一个小项目,但是对其进行了改进. 原项目地址为(https://github.com/grishasergei/conviz). 本文将从以下两个方面进行介绍: 卷积知识补充 网络权值和feature map的可

  • TensorFlow的权值更新方法

    一. MovingAverage权值滑动平均更新 1.1 示例代码: def create_target_q_network(self,state_dim,action_dim,net): state_input = tf.placeholder("float",[None,state_dim]) action_input = tf.placeholder("float",[None,action_dim]) ema = tf.train.ExponentialMo

  • 对pytorch的函数中的group参数的作用介绍

    1.当设置group=1时: conv = nn.Conv2d(in_channels=6, out_channels=6, kernel_size=1, groups=1) conv.weight.data.size() 返回: torch.Size([6, 6, 1, 1]) 另一个例子: conv = nn.Conv2d(in_channels=6, out_channels=3, kernel_size=1, groups=1) conv.weight.data.size() 返回: t

  • 关于pytorch中网络loss传播和参数更新的理解

    相比于2018年,在ICLR2019提交论文中,提及不同框架的论文数量发生了极大变化,网友发现,提及tensorflow的论文数量从2018年的228篇略微提升到了266篇,keras从42提升到56,但是pytorch的数量从87篇提升到了252篇. TensorFlow: 228--->266 Keras: 42--->56 Pytorch: 87--->252 在使用pytorch中,自己有一些思考,如下: 1. loss计算和反向传播 import torch.nn as nn

随机推荐