解决tensorflow 与keras 混用之坑

在使用tensorflow与keras混用是model.save 是正常的但是在load_model的时候报错了在这里mark 一下

其中错误为:TypeError: tuple indices must be integers, not list

再一一番百度后无结果,上谷歌后找到了类似的问题。但是是一对鸟文不知道什么东西(翻译后发现是俄文)。后来谷歌翻译了一下找到了解决方法。故将原始问题文章贴上来警示一下

原训练代码

from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense

#Каталог с данными для обучения
train_dir = 'train'
# Каталог с данными для проверки
val_dir = 'val'
# Каталог с данными для тестирования
test_dir = 'val'

# Размеры изображения
img_width, img_height = 800, 800
# Размерность тензора на основе изображения для входных данных в нейронную сеть
# backend Tensorflow, channels_last
input_shape = (img_width, img_height, 3)
# Количество эпох
epochs = 1
# Размер мини-выборки
batch_size = 4
# Количество изображений для обучения
nb_train_samples = 300
# Количество изображений для проверки
nb_validation_samples = 25
# Количество изображений для тестирования
nb_test_samples = 25

model = Sequential()

model.add(Conv2D(32, (7, 7), padding="same", input_shape=input_shape))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(10, 10)))

model.add(Conv2D(64, (5, 5), padding="same"))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(10, 10)))

model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer="Nadam",
              metrics=['accuracy'])
print(model.summary())
datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = datagen.flow_from_directory(
    train_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')

val_generator = datagen.flow_from_directory(
    val_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')

test_generator = datagen.flow_from_directory(
    test_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')

model.fit_generator(
    train_generator,
    steps_per_epoch=nb_train_samples // batch_size,
    epochs=epochs,
    validation_data=val_generator,
    validation_steps=nb_validation_samples // batch_size)

print('Сохраняем сеть')

model.save("grib.h5")
print("Сохранение завершено!")

模型载入

from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense
from keras.models import load_model

print("Загрузка сети")
model = load_model("grib.h5")
print("Загрузка завершена!")

报错

/usr/bin/python3.5 /home/disk2/py/neroset/do.py
/home/mama/.local/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
Using TensorFlow backend.
Загрузка сети
Traceback (most recent call last):
File "/home/disk2/py/neroset/do.py", line 13, in <module>
model = load_model("grib.h5")
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 243, in load_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 317, in model_from_config
return layer_module.deserialize(config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 144, in deserialize_keras_object
list(custom_objects.items())))
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 1350, in from_config
model.add(layer)
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 492, in add
output_tensor = layer(self.outputs[0])
File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 590, in __call__
self.build(input_shapes[0])
File "/usr/local/lib/python3.5/dist-packages/keras/layers/normalization.py", line 92, in build
dim = input_shape[self.axis]
TypeError: tuple indices must be integers or slices, not list

Process finished with exit code 1

战斗种族解释

убераю BatchNormalization всё работает хорошо. Не подскажите в чём ошибка?Выяснил что сохранение keras и нормализация tensorflow не работают вместе нужно просто изменить строку импорта.(译文:整理BatchNormalization一切正常。 不要告诉我错误是什么?我发现保存keras和规范化tensorflow不能一起工作;只需更改导入字符串即可。)

强调文本 强调文本

keras.preprocessing.image import ImageDataGenerator
keras.models import Sequential
keras.layers import Conv2D, MaxPooling2D, BatchNormalization
keras.layers import Activation, Dropout, Flatten, Dense

##完美解决

##附上原文链接

https://qa-help.ru/questions/keras-batchnormalization

补充:keras和tensorflow模型同时读取要慎重

项目中,先读取了一个keras模型获取模型输入size,再加载keras转tensorflow后的pb模型进行预测。

报错:

Attempting to use uninitialized value batch_normalization_14/moving_mean

逛论坛,有建议加上初始化:

sess.run(tf.global_variables_initializer())

但是这样的话,会导致模型参数全部变成初始化数据。无法使用预测模型参数。

最后发现,将keras模型的加载去掉即可。

猜测原因:keras模型和tensorflow模型同时读取有坑

import cv2
import numpy as np
from keras.models import load_model
from utils.datasets import get_labels
from utils.preprocessor import preprocess_input
import time
import os
import tensorflow as tf
from tensorflow.python.platform import gfile

os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

emotion_labels = get_labels('fer2013')
emotion_target_size = (64,64)
#emotion_model_path = './models/emotion_model.hdf5'
#emotion_classifier = load_model(emotion_model_path)
#emotion_target_size = emotion_classifier.input_shape[1:3]

path = '/mnt/nas/cv_data/emotion/test'
filelist = os.listdir(path)
total_num = len(filelist)
timeall = 0
n = 0

sess = tf.Session()
#sess.run(tf.global_variables_initializer())
with gfile.FastGFile("./trans_model/emotion_mode.pb", 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    sess.graph.as_default()
    tf.import_graph_def(graph_def, name='')

    pred = sess.graph.get_tensor_by_name("predictions/Softmax:0")

    ######################img##########################
    for item in filelist:
        if (item == '.DS_Store') | (item == 'Thumbs.db'):
            continue
        src = os.path.join(os.path.abspath(path), item)
        bgr_image = cv2.imread(src)
        gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
        gray_face = gray_image
        try:
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)

        input = sess.graph.get_tensor_by_name('input_1:0')
        res = sess.run(pred, {input: gray_face})
        print("src:", src)

        emotion_probability = np.max(res[0])
        emotion_label_arg = np.argmax(res[0])
        emotion_text = emotion_labels[emotion_label_arg]
        print("predict:", res[0], ",prob:", emotion_probability, ",label:", emotion_label_arg, ",text:",emotion_text)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • tensorflow2.0教程之Keras快速入门

    Keras 是一个用于构建和训练深度学习模型的高阶 API.它可用于快速设计原型.高级研究和生产. keras的3个优点: 方便用户使用.模块化和可组合.易于扩展 1.导入tf.keras tensorflow2推荐使用keras构建网络,常见的神经网络都包含在keras.layer中(最新的tf.keras的版本可能和keras不同) import tensorflow as tf from tensorflow.keras import layers print(tf.__version__

  • keras和tensorflow使用fit_generator 批次训练操作

    fit_generator 是 keras 提供的用来进行批次训练的函数,使用方法如下: model.fit_generator(generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=F

  • Keras模型转成tensorflow的.pb操作

    Keras的.h5模型转成tensorflow的.pb格式模型,方便后期的前端部署.直接上代码 from keras.models import Model from keras.layers import Dense, Dropout from keras.applications.mobilenet import MobileNet from keras.applications.mobilenet import preprocess_input from keras.preprocessi

  • 完美解决TensorFlow和Keras大数据量内存溢出的问题

    内存溢出问题是参加kaggle比赛或者做大数据量实验的第一个拦路虎. 以前做的练手小项目导致新手产生一个惯性思维--读取训练集图片的时候把所有图读到内存中,然后分批训练. 其实这是有问题的,很容易导致OOM.现在内存一般16G,而训练集图片通常是上万张,而且RGB图,还很大,VGG16的图片一般是224x224x3,上万张图片,16G内存根本不够用.这时候又会想起--设置batch,但是那个batch的输入参数却又是图片,它只是把传进去的图片分批送到显卡,而我OOM的地方恰是那个"传进去&quo

  • TensorFlow2.0使用keras训练模型的实现

    1.一般的模型构造.训练.测试流程 # 模型构造 inputs = keras.Input(shape=(784,), name='mnist_input') h1 = layers.Dense(64, activation='relu')(inputs) h1 = layers.Dense(64, activation='relu')(h1) outputs = layers.Dense(10, activation='softmax')(h1) model = keras.Model(inp

  • 解决TensorFlow调用Keras库函数存在的问题

    tensorflow在1.4版本引入了keras,封装成库.现想将keras版本的GRU代码移植到TensorFlow中,看到TensorFlow中有Keras库,大喜,故将神经网络定义部分使用Keras的Function API方式进行定义,训练部分则使用TensorFlow来进行编写.一顿操作之后,运行,没有报错,不由得一喜.但是输出结果,发现,和预期的不一样.难道是欠拟合?故采用正弦波预测余弦来验证算法模型. 部分调用keras库代码如上图所示,用正弦波预测余弦波,出现如下现象: def

  • TensorFlow和keras中GPU使用的设置操作

    1. 训练运行时候指定GPU 运行时候加一行代码: CUDA_VISIBLE_DEVICES=1 python train.py 2. 运行过程中按需或者定量分配GPU tensorflow直接在开启Session时候加几行代码就行,而Keras指定GPU,并限制按需用量和TensorFlow不太一样,因为keras训练是封装好的,不好对Session操作.如下是两种对应的操作. keras中的操作: import os import tensorflow as tf from keras.ba

  • 解决tensorflow 与keras 混用之坑

    在使用tensorflow与keras混用是model.save 是正常的但是在load_model的时候报错了在这里mark 一下 其中错误为:TypeError: tuple indices must be integers, not list 再一一番百度后无结果,上谷歌后找到了类似的问题.但是是一对鸟文不知道什么东西(翻译后发现是俄文).后来谷歌翻译了一下找到了解决方法.故将原始问题文章贴上来警示一下 原训练代码 from tensorflow.python.keras.preproce

  • windows安装TensorFlow和Keras遇到的问题及其解决方法

    安装TensorFlow在Windows上,真是让我心力交瘁,想死的心都有了,在Windows上做开发真的让人发狂. 首先说一下我的经历,本来也就是起初,网上说python3.7不支持TensorFlow环境,而且使用Anaconda最好,所以我将我之前Windows上所有的python环境卸载掉!!!,对没错,是所有,包括Anaconda环境,python环境,pycharm环境也卸载掉了.而且我丧心病狂的在电脑上找几乎所有关于python的字眼,全部删除掉,统统不留.只是为了铁了心在Wind

  • 解决tensorflow/keras时出现数组维度不匹配问题

    一.环境 Ubuntu 16.04 tensorflow 1.4.0 keras 2.1.3 二.训练数据时报错: ValueError: Error when checking target: expected model_2 to have shape (None, 3) but got array with shape (4, 1 原因:数组的维度不正确. 三.解决思路 一开始的想法:tensorflow 和 keras 的版本不兼容? 经过多次安装不同版本的tensorflow 和 ke

  • 解决Mac下使用python的坑

    操作系统:macOS High Sierra 10.13.3 Python3.6 因为此版本自带python2.7,就下载并安装了anaconda2的版本,结果使用的时候系统自带的python和anaconda里的python冲突,也就是装包的时候只在一处装了,另一处却不能使用.因此要配置环境变量,替代到系统自带的版本. python2.7总会发生中文字体乱码的情况,果断放弃,准备使用anaconda3. 1.安装anaconda3 在官网下载,并安装,直接都是下一步. 2.修改环境变量 在命令

  • 详解npm和cnpm混用的坑

    目录 起因 原因 NPM介绍: CNPM介绍: 更好的方式 方式改进 有没有遇到过npm和cnpm一起用的时候出现奇奇怪怪的问题呢? 有没有遇到过cnpm在支付宝小程序上面安装包无效?他们真的只是切换一个请求源吗? 我相信很多小伙伴使用cnpm的目的都很简单,那就是为了更快的下载东西,他会把请求源换成https://registry.npm.taobao.org 于是,我们就 npm install -g cnpm --registry=https://registry.npm.taobao.o

  • 解决tensorflow测试模型时NotFoundError错误的问题

    错误代码如下: NotFoundError (see above for traceback): Unsuccessful TensorSliceReader constructor: Failed to find any matching files for xxx -- 经查资料分析,错误原因可能出在加载模型时的路径问题.我采用的加载模型方法: with tf.Session() as sess: print("Reading checkpoints...") ckpt = tf.

  • 解决tensorflow模型参数保存和加载的问题

    终于找到bug原因!记一下:还是不熟悉平台的原因造成的! Q:为什么会出现两个模型对象在同一个文件中一起运行,当直接读取他们分开运行时训练出来的模型会出错,而且总是有一个正确,一个读取错误? 而 直接在同一个文件又训练又重新加载模型预测不出错,而且更诡异的是此时用分文件里的对象加载模型不会出错? model.py,里面含有 ModelV 和 ModelP,另外还有 modelP.py 和 modelV.py 分别只含有 ModelP 和 ModeV 这两个对象,先使用 modelP.py 和 m

  • 解决Tensorflow安装成功,但在导入时报错的问题

    在Mac上按照官网教程安装成功tensor flow后,但在程序中导入时,仍然报错,包括但不限于以下两个错误.对于这种错误,原因主要在于Mac内默认的python库比较老了,即便通过pip命令安装了新的包,python也会默认导入默认位置的包.这时候需要做的就是删除,有冲突的包,对于以下两个错误,就是分别时numpy和six两个包冲突了. 可以在python命令行环境下,通过numpy.version和six.version两个命令查看当前版本,如果与预期的不一致,就可以删掉. 可以通过nump

随机推荐