pytorch机器学习softmax回归的简洁实现

目录
  • 初始化模型参数
  • 重新审视softmax的实现
  • 优化算法

通过深度学习框架的高级API也能更方便地实现分类模型。让我们继续使用Fashion-MNIST数据集,并保持批量大小为256。

import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型参数

由于sofrmax回归的输出层是一个全连接层,因此,为了实现我们的模型,我们只需在Sequential中添加一个带有10个输出的全连接层。同样,在这里,Sequential并不是必要的,但我们可能会形成这种习惯。因为在实现深度模型时,Sequential将无处不在。我们仍然以均值0和标准差0.01随机初始化权重。

# PyTorch不会隐式地调整输入的形状。因此,我们在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
def init_weights(m):
	if type(m) == nn.Linear:
		nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights)

重新审视softmax的实现

在前面的例子中,我们计算了模型的输出,然后将此输出送入交叉熵损失。从数学上讲,这是一件完全合理的事情。然而,从计算角度来看,指数可能会造成数值稳定性的问题,包括上溢和下溢。

我们也希望保留传统的softmax函数,以备我们需要评估通过模型输出的概率。但是,我们没有将softmax概率传递到损失函数中,而是在交叉熵损失函数中传递未归一化的预测,并同时计算softmax及其对数。

loss = nn.CrossEntropyLoss()

优化算法

在这里,我们使用学习率为0.1的小批量随机梯度下降作为优化算法。这与我们在线性回归例子中的相同,这说明了优化器的普适性。

trainer = torch.optim.SGD(net.parameters(), lr=0.1)

以上就是pytorch机器学习softmax回归的简洁实现的详细内容,更多关于pytorch机器学习softmax回归的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python下的Softmax回归函数的实现方法(推荐)

    Softmax回归函数是用于将分类结果归一化.但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况. Softmax公式 Softmax实现方法1 import numpy as np def softmax(x): """Compute softmax values for each sets of scores in x.""" pass # TODO: Compute and re

  • Softmax函数原理及Python实现过程解析

    Softmax原理 Softmax函数用于将分类结果归一化,形成一个概率分布.作用类似于二分类中的Sigmoid函数. 对于一个k维向量z,我们想把这个结果转换为一个k个类别的概率分布p(z).softmax可以用于实现上述结果,具体计算公式为: 对于k维向量z来说,其中zi∈R,我们使用指数函数变换可以将元素的取值范围变换到(0,+∞),之后我们再所有元素求和将结果缩放到[0,1],形成概率分布. 常见的其他归一化方法,如max-min.z-score方法并不能保证各个元素为正,且和为1. S

  • TensorFlow实现Softmax回归模型

    一.概述及完整代码 对MNIST(MixedNational Institute of Standard and Technology database)这个非常简单的机器视觉数据集,Tensorflow为我们进行了方便的封装,可以直接加载MNIST数据成我们期望的格式.本程序使用Softmax Regression训练手写数字识别的分类模型. 先看完整代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist imp

  • softmax及python实现过程解析

    相对于自适应神经网络.感知器,softmax巧妙低使用简单的方法来实现多分类问题. 功能上,完成从N维向量到M维向量的映射 输出的结果范围是[0, 1],对于一个sample的结果所有输出总和等于1 输出结果,可以隐含地表达该类别的概率 softmax的损失函数是采用了多分类问题中常见的交叉熵,注意经常有2个表达的形式 经典的交叉熵形式:L=-sum(y_right * log(y_pred)), 具体 简单版本是: L = -Log(y_pred),具体 这两个版本在求导过程有点不同,但是结果

  • pyTorch深度学习softmax实现解析

    目录 用PyTorch实现linear模型 模拟数据集 定义模型 加载数据集 optimizer 模型训练 softmax回归模型 Fashion-MNIST cross_entropy 模型的实现 利用PyTorch简易实现softmax 用PyTorch实现linear模型 模拟数据集 num_inputs = 2 #feature number num_examples = 1000 #训练样本个数 true_w = torch.tensor([[2],[-3.4]]) #真实的权重值 t

  • pytorch机器学习softmax回归的简洁实现

    目录 初始化模型参数 重新审视softmax的实现 优化算法 通过深度学习框架的高级API也能更方便地实现分类模型.让我们继续使用Fashion-MNIST数据集,并保持批量大小为256. import torch from torch import nn from d2l import torch as d2l batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) 初始化模型参数 由于s

  • Pytorch 搭建分类回归神经网络并用GPU进行加速的例子

    分类网络 import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt # 构造数据 n_data = torch.ones(100, 2) x0 = torch.normal(3*n_data, 1) x1 = torch.normal(-3*n_data, 1) # 标记为y0=0,y1=1两类标签 y0 = torch.zero

  • Python机器学习logistic回归代码解析

    本文主要研究的是Python机器学习logistic回归的相关内容,同时介绍了一些机器学习中的概念,具体如下. Logistic回归的主要目的:寻找一个非线性函数sigmod最佳的拟合参数 拟合.插值和逼近是数值分析的三大工具 回归:对一直公式的位置参数进行估计 拟合:把平面上的一些系列点,用一条光滑曲线连接起来 logistic主要思想:根据现有数据对分类边界线建立回归公式.以此进行分类 sigmoid函数:在神经网络中它是所谓的激励函数.当输入大于0时,输出趋向于1,输入小于0时,输出趋向0

  • PyTorch的SoftMax交叉熵损失和梯度用法

    在PyTorch中可以方便的验证SoftMax交叉熵损失和对输入梯度的计算 关于softmax_cross_entropy求导的过程,可以参考HERE 示例: # -*- coding: utf-8 -*- import torch import torch.autograd as autograd from torch.autograd import Variable import torch.nn.functional as F import torch.nn as nn import nu

  • pytorch实现逻辑回归

    本文实例为大家分享了pytorch实现逻辑回归的具体代码,供大家参考,具体内容如下 一.pytorch实现逻辑回归 逻辑回归是非常经典的分类算法,是用于分类任务,如垃圾分类任务,情感分类任务等都可以使用逻辑回归. 接下来使用逻辑回归模型完成一个二分类任务: # 使用逻辑回归完成一个二分类任务 # 数据准备 import torch import matplotlib.pyplot as plt x1 = torch.randn(365)+1.5 # randn():输出一个形状为size的标准正

  • Pytorch中Softmax与LogSigmoid的对比分析

    Pytorch中Softmax与LogSigmoid的对比 torch.nn.Softmax 作用: 1.将Softmax函数应用于输入的n维Tensor,重新改变它们的规格,使n维输出张量的元素位于[0,1]范围内,并求和为1. 2.返回的Tensor与原Tensor大小相同,值在[0,1]之间. 3.不建议将其与NLLLoss一起使用,可以使用LogSoftmax代替之. 4.Softmax的公式: 参数: 维度,待使用softmax计算的维度. 例子: # 随机初始化一个tensor a

  • python机器学习Logistic回归原理推导

    目录 前言 Logistic回归原理与推导 sigmoid函数 目标函数 梯度上升法 Logistic回归实践 数据情况 训练算法 算法优缺点 前言 Logistic回归涉及到高等数学,线性代数,概率论,优化问题.本文尽量以最简单易懂的叙述方式,以少讲公式原理,多讲形象化案例为原则,给读者讲懂Logistic回归.如对数学公式过敏,引发不适,后果自负. Logistic回归原理与推导 Logistic回归中虽然有回归的字样,但该算法是一个分类算法,如图所示,有两类数据(红点和绿点)分布如下,如果

  • Pytorch实现逻辑回归分类

    本文实例为大家分享了Pytorch实现逻辑回归分类的具体代码,供大家参考,具体内容如下 1.代码实现 步骤: 1.获得数据2.建立逻辑回归模型3.定义损失函数4.计算损失函数5.求解梯度6.梯度更新7.预测测试集 import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt from torch.autograd import Variable import torchvision.da

  • 基于Pytorch实现逻辑回归

    本文实例为大家分享了Pytorch实现逻辑回归的具体代码,供大家参考,具体内容如下 1.逻辑回归 线性回归表面上看是“回归问题”,实际上处理的问题是“分类”问题,逻辑回归模型是一种广义的回归模型,其与线性回归模型有很多的相似之处,模型的形式也基本相同,唯一不同的地方在于逻辑回归会对y作用一个逻辑函数,将其转化为一种概率的结果.逻辑函数也称为Sigmoid函数,是逻辑回归的核心. 2.基于Pytorch实现逻辑回归 import torch as t import matplotlib.pyplo

  • Pytorch中Softmax和LogSoftmax的使用详解

    一.函数解释 1.Softmax函数常用的用法是指定参数dim就可以: (1)dim=0:对每一列的所有元素进行softmax运算,并使得每一列所有元素和为1. (2)dim=1:对每一行的所有元素进行softmax运算,并使得每一行所有元素和为1. class Softmax(Module): r"""Applies the Softmax function to an n-dimensional input Tensor rescaling them so that th

随机推荐