keras分类模型中的输入数据与标签的维度实例

在《python深度学习》这本书中。

一、21页mnist十分类

导入数据集
from keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

初始数据维度:
>>> train_images.shape
(60000, 28, 28)
>>> len(train_labels)
60000
>>> train_labels
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)

数据预处理:
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
train_labels = to_categorical(train_labels)

之后:
print(train_images, type(train_images), train_images.shape, train_images.dtype)
print(train_labels, type(train_labels), train_labels.shape, train_labels.dtype)
结果:
[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]] <class 'numpy.ndarray'> (60000, 784) float32
[[0. 0. 0. ... 0. 0. 0.]
 [1. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 1. 0.]] <class 'numpy.ndarray'> (60000, 10) float32

二、51页IMDB二分类

导入数据:

from keras.datasets import imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

参数 num_words=10000 的意思是仅保留训练数据中前 10 000 个最常出现的单词。

train_data和test_data都是numpy.ndarray类型,都是一维的(共25000个元素,相当于25000个list),其中每个list代表一条评论,每个list中的每个元素的值范围在0-9999 ,代表10000个最常见单词的每个单词的索引,每个list长度不一,因为每条评论的长度不一,例如train_data中的list最短的为11,最长的为189。

train_labels和test_labels都是含25000个元素(元素的值要不0或者1,代表两类)的list。

数据预处理:

# 将整数序列编码为二进制矩阵
def vectorize_sequences(sequences, dimension=10000):
 # Create an all-zero matrix of shape (len(sequences), dimension)
 results = np.zeros((len(sequences), dimension))
 for i, sequence in enumerate(sequences):
  results[i, sequence] = 1. # set specific indices of results[i] to 1s
 return results

x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

第一种方式:shape为(25000,)
y_train = np.asarray(train_labels).astype('float32') #就用这种方式就行了
y_test = np.asarray(test_labels).astype('float32')
第二种方式:shape为(25000,1)
y_train = np.asarray(train_labels).astype('float32').reshape(25000, 1)
y_test = np.asarray(test_labels).astype('float32').reshape(25000, 1)
第三种方式:shape为(25000,2)
y_train = to_categorical(train_labels) #变成one-hot向量
y_test = to_categorical(test_labels)

第三种方式,相当于把二分类看成了多分类,所以网络的结构同时需要更改,

最后输出的维度:1->2

最后的激活函数:sigmoid->softmax

损失函数:binary_crossentropy->categorical_crossentropy

预处理之后,train_data和test_data变成了shape为(25000,10000),dtype为float32的ndarray(one-hot向量),train_labels和test_labels变成了shape为(25000,)的一维ndarray,或者(25000,1)的二维ndarray,或者shape为(25000,2)的one-hot向量。

注:

1.sigmoid对应binary_crossentropy,softmax对应categorical_crossentropy

2.网络的所有输入和目标都必须是浮点数张量

补充知识:keras输入数据的方法:model.fit和model.fit_generator

1.第一种,普通的不用数据增强的

from keras.datasets import mnist,cifar10,cifar100
(X_train, y_train), (X_valid, Y_valid) = cifar10.load_data()
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True,
    verbose=1, validation_data=(X_valid, Y_valid), )

2.第二种,带数据增强的 ImageDataGenerator,可以旋转角度、平移等操作。

from keras.preprocessing.image import ImageDataGenerator
(trainX, trainY), (testX, testY) = cifar100.load_data()
trainX = trainX.astype('float32')
testX = testX.astype('float32')
trainX /= 255.
testX /= 255.
Y_train = np_utils.to_categorical(trainY, nb_classes)
Y_test = np_utils.to_categorical(testY, nb_classes)
generator = ImageDataGenerator(rotation_range=15,
        width_shift_range=5./32,
        height_shift_range=5./32)
generator.fit(trainX, seed=0)
model.fit_generator(generator.flow(trainX, Y_train, batch_size=batch_size),
     steps_per_epoch=len(trainX) // batch_size, epochs=nb_epoch,
     callbacks=callbacks,
     validation_data=(testX, Y_test),
     validation_steps=testX.shape[0] // batch_size, verbose=1)

以上这篇keras分类模型中的输入数据与标签的维度实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 解决keras使用cov1D函数的输入问题

    解决了以下错误: 1.ValueError: Input 0 is incompatible with layer conv1d_1: expected ndim=3, found ndim=4 2.ValueError: Error when checking target: expected dense_3 to have 3 dimensions, but got array with - 1.ValueError: Input 0 is incompatible with layer c

  • 解决Keras中CNN输入维度报错问题

    想要写分类器对图片进行分类,用到了CNN.然而,在运行程序时,一直报错: ValueError: Negative dimension size caused by subtracting 5 from 1 for 'conv2d_1/convolution' (op: 'Conv2D') with input shapes: [?,1,28,28], [5,5,28,30]. 这部分提到的代码是这样的,这是我的分类器的输入层: model.add(Conv2D(30,(5, 5), input

  • Python实现Keras搭建神经网络训练分类模型教程

    我就废话不多说了,大家还是直接看代码吧~ 注释讲解版: # Classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Act

  • 使用keras时input_shape的维度表示问题说明

    Keras提供了两套后端,Theano和Tensorflow,不同的后端使用时维度顺序dim_ordering会有冲突. 对于一张224*224的彩色图片表示问题,theano使用的是th格式,维度顺序是(3,224,224),即通道维度在前,Caffe采取的也是这种方式.而Tensorflow使用的是tf格式,维度顺序是(224,224,3),即通道维度在后. Keras默认使用的是Tensorflow.我们在导入模块的时候可以进行查看,也可以切换后端. 为了代码可以在两种后端兼容,可以通过d

  • keras分类模型中的输入数据与标签的维度实例

    在<python深度学习>这本书中. 一.21页mnist十分类 导入数据集 from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() 初始数据维度: >>> train_images.shape (60000, 28, 28) >>> len(train_labels) 60000 >>

  • 浅谈keras保存模型中的save()和save_weights()区别

    今天做了一个关于keras保存模型的实验,希望有助于大家了解keras保存模型的区别. 我们知道keras的模型一般保存为后缀名为h5的文件,比如final_model.h5.同样是h5文件用save()和save_weight()保存效果是不一样的. 我们用宇宙最通用的数据集MNIST来做这个实验,首先设计一个两层全连接网络: inputs = Input(shape=(784, )) x = Dense(64, activation='relu')(inputs) x = Dense(64,

  • Vue后台中优雅书写状态标签的方法实例

    目录 前言 优化 二次封装 el-tag 组件 使用 总结 前言 在后台系统开发中,对于列表,常常有一些状态字段的展示,比如审核状态.退货申请状态等等,并且往往伴随有状态筛选的列表查询条件,同时状态显示对应不同颜色,在写代码时有些人往往是这么做的: <template> <el-form :model="query"> <el-form-item label="审批状态" prop="status"> <

  • 解决Django中调用keras的模型出现的问题

    笔者小白在用Django写一个表格单据图片的识别应用的时候,遇到了调用基于Tensorflow的keras模型出错的问题. 出现的错误信息类似于以下: ValueError: Tensor Tensor("Placeholder:0", shape=(3, 3, 1, 32), dtype=float32) 通过查询相关的资料,对解决的方式做一个记录. 方法1.通过导入 import Keras 然后在构建模型前面加一句 keras.backend.clear_session() 方法

  • tensorflow基本操作小白快速构建线性回归和分类模型

    目录 tensorflow是非常强的工具,生态庞大 tensorflow提供了Keras的分支 Define tensor constants. Linear Regression 分类模型 本例使用MNIST手写数字 Model prediction: 7 Model prediction: 2 Model prediction: 1 Model prediction: 0 Model prediction: 4 TF 目前发布2.5 版本,之前阅读1.X官方文档,最近查看2.X的文档. te

  • python神经网络使用Keras进行模型的保存与读取

    目录 学习前言 Keras中保存与读取的重要函数 1.model.save 2.load_model 全部代码 学习前言 开始做项目的话,有些时候会用到别人训练好的模型,这个时候要学会load噢. Keras中保存与读取的重要函数 1.model.save model.save用于保存模型,在保存模型前,首先要利用pip install安装h5py的模块,这个模块在Keras的模型保存与读取中常常被使用,用于定义保存格式. pip install h5py 完成安装后,可以通过如下函数保存模型.

  • Python搭建Keras CNN模型破解网站验证码的实现

    在本项目中,将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的验证码.验证码如下: 利用Keras可以快速方便地搭建CNN模型,本项目搭建的CNN模型如下: 将数据集分为训练集和测试集,占比为8:2,该模型训练的代码如下: # -*- coding: utf-8 -*- import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from matplotlib im

  • 在Keras中利用np.random.shuffle()打乱数据集实例

    我就废话不多说了,大家还是直接看代码吧~ from numpy as np index=np.arange(2000) np.random.shuffle(index) print(index[0:20]) X_train=X_train[index,:,:,:]#X_train是训练集,y_train是训练标签 y_train=y_train[index] 补充知识:Keras中shuffle和validation_split的顺序 模型的fit函数有两个参数,shuffle用于将数据打乱,v

  • python利用xpath爬取网上数据并存储到django模型中

    帮朋友制作一个网站,需要一些产品数据信息,因为是代理其他公司产品,直接爬取代理公司产品数据 1.设计数据库 from django.db import models from uuslug import slugify import uuid import os def products_directory_path(instance, filename): ext = filename.split('.')[-1] filename = '{}.{}'.format(uuid.uuid4().

随机推荐