Linux内核链表实现过程

关于双链表实现,一般教科书上定义一个双向链表节点的方法如下:


代码如下:

struct list_node{
stuct list_node *pre;
stuct list_node *next;
ElemType data;
}

即一个链表节点包含:一个指向前向节点的指针、一个指向后续节点的指针,以及数据域共三部分。
但查看linux内核代码中的list实现时,会发现其与教科书上的方法有很大的差别。
来看看linux是如何实现双链表。
双链表节点定义


代码如下:

struct list_head {
 struct list_head *next, *prev;
};

发现链表节点中根本就没有数据域,这样的链表有什么用?linux内核中定义这样的链表原因何在?
这是因为linux中是通过独立定义一个链表结构,并在结构体中内嵌一个链表节点来实现链表结构的。这样有一个好处就是能达到链表与结构体分离的目的。如此一来,我们构建好一个链表后,其结构示意图如下:

链表的定义及初始化宏定义:


代码如下:

#define LIST_HEAD_INIT(name){&(name),&(name)} 
#define LIST_HEAD(name) \
      struct list_head name = LIST_HEAD_INIT(name)
#define INIT_LIST_HEAD(ptr) do { \
      (ptr)->next = (ptr); (ptr)->prev = (ptr);\
      } while (0)

LIST_HEAD(name)宏用来定义一个链表头,并使他的两个指针都指向自己。我们可以在程序的变量声明处,直接调用LIST_HEAD(name)宏,来定义并初始化一个名为name的链表。也可以先声明一个链表,然后再使用INIT_LIST_HEAD来初始化这个链表。
也即:


代码如下:

LIST_HEAD(mylist);
 与
 struct list_head mylist;
 INIT_LIST_HEAD(&mylist);

是等价的。

插入操作


代码如下:

/*仅供内部调用
  * Insert a new entry between two known consecutive entries.
  * This is only for internal list manipulation where we know
  * the prev/next entries already!
  */
static inline void __list_add(struct list_head *new,
         struct list_head *prev,
         struct list_head *next)
{
 next->prev = new;
 new->next = next;
 new->prev = prev;
 prev->next = new;
}

代码如下:

//在头节点后面插入一个节点
static inline void list_add(struct list_head *new, struct list_head *head)
{
 __list_add(new, head, head->next);
}
//在尾节点后插入一个节点
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
 __list_add(new, head->prev, head);
}

删除操作


代码如下:

static inline void __list_del(struct list_head * prev, struct list_head * next)
{
 next->prev = prev;
 prev->next = next;
}
static inline void list_del(struct list_head *entry)
{
 __list_del(entry->prev, entry->next);
}

删除链表节点的操作很简单,是通过将要删除的节点的前一个节点与后一个节点链接到一起。
链表节点替换操作
 

代码如下:

static inline void list_replace(struct list_head *old,
    struct list_head *new)
{
 new->next = old->next;
 new->next->prev = new;
 new->prev = old->prev;
 new->prev->next = new;
}

链表遍历操作(重点在这里)
首先来看一个如何根据链表节点地址得到其所在结构体的地址。


代码如下:

#define list_entry(ptr, type, member) container_of(ptr, type, member)
//container_of宏的定义如下:
#define container_of(ptr, type, member)({\
        const typeof(((type *)0)->member ) *__mptr = (ptr);\
        (type *)( (char *)__mptr - offsetof(type,member) );})
//offsetof的宏定义如下:
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
将上述简化一下成为下面这样:
#define list_entry(ptr, type, member) \
  ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))

是一个带3个参数的宏,该宏的作用是获取链表节点(ptr)所在结构体的起始地址。有了这个宏,我们只要知道某一个链表节点指针,就可以通过该链表节点得到其所在结构体的指针,从而,我们遍历链表,也便可以达到遍历我们自己定义的结构体。第一个参数为一个地址,他是结构体链表节点元素的地址,第二个参数是结构体类型,第三个参数是链表节点元素在结构体中的名字。
来仔细分析一下这个宏:
最外面的一层括号可以去掉,这是为了防止宏扩展的,去掉如下:
(type *) ((char *)(ptr)-(size_t)(&((type *)0)->member))
现在就比较清楚了,首先(type *)是C强制转换操作,就是将后面的的数据转化成type结构的指针。而后面的操作可以再分解
(char *)(ptr) - (size_t)(&((type *)0)->member)
 这样就是一个减法的操作,前面是一个指针,我们传过去的结构体链表节点元素的指针,这里被转化成指向字符的。而后面是一个整形,可以再分解
(size_t) (&((type *)0)->member)
显然这个整形是一个指针转化的,而这个指针又可以再分解,
&((type *)0)->member
     可以看出这个指针是一个变量取地址得到的,这个变量又是什么呢
((type *)0)->member
     看起来有点奇怪,不过这个操作是整个宏中最精妙的,他将地址0转化成type类型,接下来又取得这个结构的member元素,member就是我们传进来的参数:元素在结构体中的命名。其实((type *)0)->member取的变量是内容是什么一点都不重要,重要的我们要取这个变量的地址。取完这个地址将它转换成size_t类型,这样这个数据就是((type *)0)->member相对与地址0的偏移。回到上面的那个减法,将结构体中链表节点元素的地址与他与结构体首地址的偏移相减,不就得到了结构体的地址了吗。)(&((type *)0)->member)))
    最外面的一层括号可以去掉,这是为了防止宏扩展的,去掉如下:
(type *) ((char *)(ptr)-(size_t)(&((type *)0)->member))
     现在就比较清楚了,首先(type *)是C强制转换操作,就是将后面的数据转化成type结构的指针。而后面的操作可以再分解
(char *)(ptr) - (size_t)(&((type *)0)->member)
     这样就是一个减法的操作,前面是一个指针,我们传过去的结构体元素的指针,这里被转化成指向字符的。而后面是一个长整形,可以再分解
(size_t) (&((type *)0)->member)
     显然这个长整形是一个指针转化的,而这个指针又可以再分解,
&((type *)0)->member
     可以看出这个指针是一个变量取地址得到的,这个变量又是什么呢?
((type *)0)->member
     起来有点奇怪,不过这个操作是整个宏中最精妙的,他将地址0转化成type类型,接下来又取得这个结构的member元素,member就是我们传进来的参数:元素在结构体中的命名。其实((type *)0)->member取的变量是内容是什么一点都不重要,重要的我们要取这个变量的地址。取完这个地址将它转换成size_t类型,这样这个数据就是((type *)0)->member相对与地址0的偏移。回到上面的那个减法,将结构体中元素的地址与他与结构体首地址的偏移相减,便得到了结构体的地址了。
链表的遍历操作时通过一个宏来实现的:


代码如下:

#define list_for_each(pos, head) \
   for(pos = (head)->next, prefetch(pos->next);pos!=(head);\
        pos = pos->next,prefetch(pos->next))

其中prefetch是用于性能优化,暂时不用去管它。
从上述链表遍历宏可以看出,其只是一次获得了链表节点指针,在实际应用中,我们都需要获取链表节点所在结构体的数据项,因此,通常将list_for_each和list_entry一起使用。为此,linux的list实现提供了另外一个接口如下:


代码如下:

#define list_for_each_entry(pos, head, member)\
 for(pos = list_entry((head)->next, typeof(*pos), member);\
    prefetch(pos->member.next), &pos->member != (head);\
    pos = list_entry(pos->member.next, typeof(*pos), member))

有了这个接口,我们就可以通过链表结构来遍历我们实际的结构体数据域了。
例如,我们定义了一个结构体如下:


代码如下:

struct mystruct{
ElemType1 data1;
ElemType2 data2;
strcut list_head anchor;//通常我们称结构体内的链表节点为链表锚,因为它有定位的作用。
}

那么我们遍历链表的代码如下:


代码如下:

struct mystruct  *pos;
list_for_each_entry(pos,head,anchor){
mystruct *pStruct=pos;
//do something with pStruct.....
}

此外Linux链表还提供了两个对应于基本遍历操作的"_safe"接口:list_for_each_safe(pos, n, head)、list_for_each_entry_safe(pos, n, head, member),它们要求调用者另外提供一个与pos同类型的指针n,在for循环中暂存pos下一个节点的地址,避免因pos节点被释放而造成的断链。
当然,linux链表不止提供上述接口,还有


代码如下:

list_for_each_prev(pos, head)
list_for_each_prev_safe(pos, n, head)
list_for_each_entry_reverse(pos, head, member)
list_prepare_entry(pos, head, member)
static inline int list_empty_careful(const struct list_head *head)
static inline void list_del_init(struct list_head *entry)
static inline void list_move(struct list_head *list, struct list_head *head)
static inline void list_move_tail(struct list_head *list,
struct list_head *head)
static inline int list_empty(const struct list_head *head)

(0)

相关推荐

  • Linux中的内核链表实例详解

    Linux中的内核链表实例详解 链表中一般都要进行初始化.插入.删除.显示.释放链表,寻找节点这几个操作,下面我对这几个操作进行简单的介绍,因为我的能力不足,可能有些东西理解的不够深入,造成一定的错误,请各位博友指出. A.Linux内核链表中的几个主要函数(下面是内核中的源码拿出来给大家分析一下) 1)初始化: #define INIT_LIST_HEAD(ptr) do { \ (ptr)->next = (ptr); (ptr)->prev = (ptr); \ } while (0)

  • Linux 内核通用链表学习小结

    描述 在linux内核中封装了一个通用的双向链表库,这个通用的链表库有很好的扩展性和封装性,它给我们提供了一个固定的指针域结构体,我们在使用的时候,只需要在我们定义的数据域结构体中包含这个指针域结构体就可以了,具体的实现.链接并不需要我们关心,只要调用提供给我们的相关接口就可以完成了. 传统的链表结构 struct node{ int key; int val; node* prev; node* next; } linux 内核通用链表库结构 提供给我们的指针域结构体: struct list

  • Linux内核链表实现过程

    关于双链表实现,一般教科书上定义一个双向链表节点的方法如下: 复制代码 代码如下: struct list_node{stuct list_node *pre;stuct list_node *next;ElemType data; } 即一个链表节点包含:一个指向前向节点的指针.一个指向后续节点的指针,以及数据域共三部分.但查看linux内核代码中的list实现时,会发现其与教科书上的方法有很大的差别.来看看linux是如何实现双链表.双链表节点定义 复制代码 代码如下: struct lis

  • Linux内核设备驱动之内核中链表的使用笔记整理

    /******************** * 内核中链表的应用 ********************/ (1)介绍 在Linux内核中使用了大量的链表结构来组织数据,包括设备列表以及各种功能模块中的数据组织.这些链表大多采用在include/linux/list.h实现的一个相当精彩的链表数据结构. 链表数据结构的定义很简单: struct list_head { struct list_head *next, *prev; }; list_head结构包含两个指向list_head结构的

  • 详解Linux内核中的container_of函数

    前言 在linux 内核中,container_of 函数使用非常广,例如 linux内核链表 list_head.工作队列work_struct中. 在linux内核中大名鼎鼎的宏container_of() ,其实它的语法很简单,只是一些指针的灵活应用,它分两步: 第一步,首先定义一个临时的数据类型(通过typeof( ((type *)0)->member )获得)与ptr相同的指针变量__mptr,然后用它来保存ptr的值. 第二步,用(char *)__mptr减去member在结构体

  • 解析Linux内核的基本的模块管理与时间管理操作

    内核模块管理 Linux设备驱动会以内核模块的形式出现,因此学会编写Linux内核模块编程是学习linux设备驱动的先决条件. Linux内核的整体结构非常庞大,其包含的组件非常多.我们把需要的功能都编译到linux内核,以模块方式扩展内核功能. 先来看下最简单的内核模块 #include <linux/init.h> #include <linux/module.h> static int __init hello_init(void) { printk(KERN_ALERT &

  • Linux内核设备驱动之内核的时间管理笔记整理

    /****************** * linux内核的时间管理 ******************/ (1)内核中的时间概念 时间管理在linux内核中占有非常重要的作用. 相对于事件驱动而言,内核中有大量函数是基于时间驱动的. 有些函数是周期执行的,比如每10毫秒刷新一次屏幕: 有些函数是推后一定时间执行的,比如内核在500毫秒后执行某项任务. 要区分: *绝对时间和相对时间 *周期性产生的事件和推迟执行的事件 周期性事件是由系统系统定时器驱动的 (2)HZ值 内核必须在硬件定时器的帮

  • 简单谈谈Linux内核定时器

    软件意义上的定时器最终依赖硬件定时器来实现, 内核在时钟中断发生后检测各定时器是否到期 , 到期后的定时器处理函数将作为软中断在底半部执行 .实质上,时钟中断处理程序会 换起TIMER_SOFTIRQ软中断 ,运行当前处理器上到期的所有定时器. 总结起来还是软中断的流程 a.注册软中断处理函数 /*/linux/kernel.timer.c*/ void __init init_timers(void) -->open_softirq(TIMER_SOFTIRQ, run_timer_softi

  • Linux内核漏洞浅析

    与Windows相比,Linux被认为具有更好的安全性和其他扩展性能.这些特性使得Linux在操作系统领域异军突起,得到越来越多的重视.随着Linux应用量的增加,其安全性也逐渐受到了公众甚或黑客的关注.那么,Linux是否真的如其支持厂商们所宣称的那样安全呢?本期我们请到了启明星辰信息技术有限公司积极防御实验室工程师赵伟,对Linux进行专业的漏洞技术分析. Linux内核精短.稳定性高.可扩展性好.硬件需求低.免费.网络功能丰富.适用于多种cpu等特性,使之在操作系统领域异军突起.其独特的魅

  • 浅谈Linux内核创建新进程的全过程

    进程描述 进程描述符(task_struct) 用来描述进程的数据结构,可以理解为进程的属性.比如进程的状态.进程的标识(PID)等,都被封装在了进程描述符这个数据结构中,该数据结构被定义为task_struct 进程控制块(PCB) 是操作系统核心中一种数据结构,主要表示进程状态. 进程状态 fork() fork()在父.子进程各返回一次.在父进程中返回子进程的 pid,在子进程中返回0. fork一个子进程的代码 #include <stdio.h> #include <stdli

随机推荐