Python实现曲线点抽稀算法的示例

本文介绍了Python实现曲线点抽稀算法的示例,分享给大家,具体如下:

目录

  • 何为抽稀
  • 道格拉斯-普克(Douglas-Peuker)算法
  • 垂距限值法
  • 最后

正文

何为抽稀

在处理矢量化数据时,记录中往往会有很多重复数据,对进一步数据处理带来诸多不便。多余的数据一方面浪费了较多的存储空间,另一方面造成所要表达的图形不光滑或不符合标准。因此要通过某种规则,在保证矢量曲线形状不变的情况下, 最大限度地减少数据点个数,这个过程称为抽稀。

通俗的讲就是对曲线进行采样简化,即在曲线上取有限个点,将其变为折线,并且能够在一定程度保持原有形状。比较常用的两种抽稀算法是:道格拉斯-普克(Douglas-Peuker)算法和垂距限值法。

道格拉斯-普克(Douglas-Peuker)算法

Douglas-Peuker算法(DP算法)过程如下:

1、连接曲线首尾两点A、B;
2、依次计算曲线上所有点到A、B两点所在曲线的距离;
3、计算最大距离D,如果D小于阈值threshold,则去掉曲线上出A、B外的所有点;如果D大于阈值threshold,则把曲线以最大距离分割成两段;
4、对所有曲线分段重复1-3步骤,知道所有D均小于阈值。即完成抽稀。
这种算法的抽稀精度与阈值有很大关系,阈值越大,简化程度越大,点减少的越多;反之简化程度越低,点保留的越多,形状也越趋于原曲线。

下面是Python代码实现:

# -*- coding: utf-8 -*-
"""------------------------------------------------- File Name:  DouglasPeuker Description : 道格拉斯-普克抽稀算法 Author :    J_hao date:     2017/8/16------------------------------------------------- Change Activity:         2017/8/16: 道格拉斯-普克抽稀算法-------------------------------------------------"""
from __future__ import division

from math import sqrt, pow

__author__ = 'J_hao'

THRESHOLD = 0.0001 # 阈值

def point2LineDistance(point_a, point_b, point_c):
  """  计算点a到点b c所在直线的距离  :param point_a:  :param point_b:  :param point_c:  :return:  """
  # 首先计算b c 所在直线的斜率和截距
  if point_b[0] == point_c[0]:
    return 9999999
  slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])
  intercept = point_b[1] - slope * point_b[0]

  # 计算点a到b c所在直线的距离
  distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))
  return distance

class DouglasPeuker(object):
  def__init__(self):
    self.threshold = THRESHOLD
    self.qualify_list = list()
    self.disqualify_list = list()

  def diluting(self, point_list):
    """    抽稀    :param point_list:二维点列表    :return:    """
    if len(point_list) < 3:
      self.qualify_list.extend(point_list[::-1])
    else:
      # 找到与收尾两点连线距离最大的点
      max_distance_index, max_distance = 0, 0
      for index, point in enumerate(point_list):
        if index in [0, len(point_list) - 1]:
          continue
        distance = point2LineDistance(point, point_list[0], point_list[-1])
        if distance > max_distance:
          max_distance_index = index
          max_distance = distance

      # 若最大距离小于阈值,则去掉所有中间点。 反之,则将曲线按最大距离点分割
      if max_distance < self.threshold:
        self.qualify_list.append(point_list[-1])
        self.qualify_list.append(point_list[0])
      else:
        # 将曲线按最大距离的点分割成两段
        sequence_a = point_list[:max_distance_index]
        sequence_b = point_list[max_distance_index:]

        for sequence in [sequence_a, sequence_b]:
          if len(sequence) < 3 and sequence == sequence_b:
            self.qualify_list.extend(sequence[::-1])
          else:
            self.disqualify_list.append(sequence)

  def main(self, point_list):
    self.diluting(point_list)
    while len(self.disqualify_list) > 0:
      self.diluting(self.disqualify_list.pop())
    print self.qualify_list
    print len(self.qualify_list)

if __name__ == '__main__':
  d = DouglasPeuker()
  d.main([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],
      [104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],
      [104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],
      [104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],
      [104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],
      [104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],
      [104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],
      [104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],
      [104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],
      [104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],
      [104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],
      [104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],
      [104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],
      [104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],
      [104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],
      [104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],
      [104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],
      [104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],
      [104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])

垂距限值法

垂距限值法其实和DP算法原理一样,但是垂距限值不是从整体角度考虑,而是依次扫描每一个点,检查是否符合要求。

算法过程如下:

1、以第二个点开始,计算第二个点到前一个点和后一个点所在直线的距离d;
2、如果d大于阈值,则保留第二个点,计算第三个点到第二个点和第四个点所在直线的距离d;若d小于阈值则舍弃第二个点,计算第三个点到第一个点和第四个点所在直线的距离d;
3、依次类推,直线曲线上倒数第二个点。

下面是Python代码实现:

# -*- coding: utf-8 -*-
"""------------------------------------------------- File Name:  LimitVerticalDistance Description : 垂距限值抽稀算法 Author :    J_hao date:     2017/8/17------------------------------------------------- Change Activity:         2017/8/17:-------------------------------------------------"""
from __future__ import division

from math import sqrt, pow

__author__ = 'J_hao'

THRESHOLD = 0.0001 # 阈值

def point2LineDistance(point_a, point_b, point_c):
  """  计算点a到点b c所在直线的距离  :param point_a:  :param point_b:  :param point_c:  :return:  """
  # 首先计算b c 所在直线的斜率和截距
  if point_b[0] == point_c[0]:
    return 9999999
  slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])
  intercept = point_b[1] - slope * point_b[0]

  # 计算点a到b c所在直线的距离
  distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))
  return distance

class LimitVerticalDistance(object):
  def__init__(self):
    self.threshold = THRESHOLD
    self.qualify_list = list()

  def diluting(self, point_list):
    """    抽稀    :param point_list:二维点列表    :return:    """
    self.qualify_list.append(point_list[0])
    check_index = 1
    while check_index < len(point_list) - 1:
      distance = point2LineDistance(point_list[check_index],
                     self.qualify_list[-1],
                     point_list[check_index + 1])

      if distance < self.threshold:
        check_index += 1
      else:
        self.qualify_list.append(point_list[check_index])
        check_index += 1
    return self.qualify_list

if __name__ == '__main__':
  l = LimitVerticalDistance()
  diluting = l.diluting([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],
      [104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],
      [104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],
      [104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],
      [104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],
      [104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],
      [104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],
      [104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],
      [104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],
      [104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],
      [104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],
      [104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],
      [104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],
      [104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],
      [104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],
      [104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],
      [104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],
      [104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],
      [104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])
  print len(diluting)
  print(diluting)

最后

其实DP算法和垂距限值法原理一样,DP算法是从整体上考虑一条完整的曲线,实现时较垂距限值法复杂,但垂距限值法可能会在某些情况下导致局部最优。另外在实际使用中发现采用点到另外两点所在直线距离的方法来判断偏离,在曲线弧度比较大的情况下比较准确。如果在曲线弧度比较小,弯��程度不明显时,这种方法抽稀效果不是很理想,建议使用三点所围成的三角形面积作为判断标准。下面是抽稀效果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python k-近邻算法实例分享

    简单说明 这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了. 简称kNN. 已知:训练集,以及每个训练集的标签. 接下来:和训练集中的数据对比,计算最相似的k个距离.选择相似数据中最多的那个分类.作为新数据的分类. python实例 复制代码 代码如下: # -*- coding: cp936 -*- #win系统中应用cp936编码,linux中最好还是utf-8比较好.from numpy import *#引入科学计算包import operator #经典pyt

  • Python实现的Kmeans++算法实例

    1.从Kmeans说起 Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了.下面说一下如何在matlab中使用kmeans算法. 创建7个二维的数据点: 复制代码 代码如下: x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]]; 使用kmeans函数: 复制代码 代码如下: class = kmeans(x, 2); x是数据点,x的每一行代表一个数据:2指定要有2个中心点,也就是聚类结果要有2个簇. class将是一个具有7

  • Python算法之栈(stack)的实现

    本文以实例形式展示了Python算法中栈(stack)的实现,对于学习数据结构域算法有一定的参考借鉴价值.具体内容如下: 1.栈stack通常的操作: Stack() 建立一个空的栈对象 push() 把一个元素添加到栈的最顶层 pop() 删除栈最顶层的元素,并返回这个元素 peek()  返回最顶层的元素,并不删除它 isEmpty()  判断栈是否为空 size()  返回栈中元素的个数 2.简单案例以及操作结果: Stack Operation Stack Contents Return

  • python使用rsa加密算法模块模拟新浪微博登录

    PC登录新浪微博时,在客户端用js预先对用户名.密码都进行了加密,而且在POST之前会GET一组参数,这也将作为POST_DATA的一部分.这样,就不能用通常的那种简单方法来模拟POST登录(比如人人网). 通过爬虫获取新浪微博数据,模拟登录是必不可少的. 1.在提交POST请求之前,需要GET获取四个参数(servertime,nonce,pubkey和rsakv),不是之前提到的只是获取简单的servertime,nonce,这里主要是由于js对用户名.密码加密方式改变了. 1.1 由于加密

  • 朴素贝叶斯算法的python实现方法

    本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 比如我们想判断一个邮件是不是垃圾邮件,那么我们知道的是这个邮件中的词的分布,那么我们还要知道:垃圾邮件中某些词的出现是多少,就可以利用贝叶斯定理得到. 朴素贝叶斯分类器中的一个假设是:每个特征同等重要 函数 loadDataSet() 创建数据集,这里的数据集

  • python实现RSA加密(解密)算法

    RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准. 今天只有短的RSA钥匙才可能被强力方式解破.到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式.只要其密钥的长度足够长,用RSA加密的信息实际上是不能被解破的.但在分布式计算和量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战. RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥.

  • 数据挖掘之Apriori算法详解和Python实现代码分享

    关联规则挖掘(Association rule mining)是数据挖掘中最活跃的研究方法之一,可以用来发现事情之间的联系,最早是为了发现超市交易数据库中不同的商品之间的关系.(啤酒与尿布) 基本概念 1.支持度的定义:support(X-->Y) = |X交Y|/N=集合X与集合Y中的项在一条记录中同时出现的次数/数据记录的个数.例如:support({啤酒}-->{尿布}) = 啤酒和尿布同时出现的次数/数据记录数 = 3/5=60%. 2.自信度的定义:confidence(X-->

  • Python实现曲线点抽稀算法的示例

    本文介绍了Python实现曲线点抽稀算法的示例,分享给大家,具体如下: 目录 何为抽稀 道格拉斯-普克(Douglas-Peuker)算法 垂距限值法 最后 正文 何为抽稀 在处理矢量化数据时,记录中往往会有很多重复数据,对进一步数据处理带来诸多不便.多余的数据一方面浪费了较多的存储空间,另一方面造成所要表达的图形不光滑或不符合标准.因此要通过某种规则,在保证矢量曲线形状不变的情况下, 最大限度地减少数据点个数,这个过程称为抽稀. 通俗的讲就是对曲线进行采样简化,即在曲线上取有限个点,将其变为折

  • Python数学建模学习模拟退火算法旅行商问题示例解析

    目录 1.旅行商问题(Travelling salesman problem, TSP) 2.模拟退火算法求解旅行商问题 3. 程序说明 4.模拟退火算法求解旅行商问题 Python 程序 5.运行结果 1.旅行商问题(Travelling salesman problem, TSP) 旅行商问题是经典的组合优化问题,要求找到遍历所有城市且每个城市只访问一次的最短旅行路线,即对给定的正权完全图求其总权重最小的Hamilton回路:设有 n个城市和距离矩阵 D=[dij],其中dij表示城市i到城

  • Python和Matlab实现蝙蝠算法的示例代码

    目录 1前言 2 蝙蝠算法原理细讲 3 详细步骤 4Python实现 4.1代码 4.2结果 5Matlab实现 5.1 代码 5.2 结果 5.3 展望 1 前言 蝙蝠算法是2010年杨教授基于群体智能提出的启发式搜索算法,是一种搜索全局最优解的有效方法.该算法基于迭代优化,初始化为一组随机解,然后迭代搜寻最优解,且在最优解周围通过随机飞行产生局部新解,加强局部搜索速度.该算法具有实现简单.参数少等特点. 该算法主要用于目标函数寻优,基于蝙蝠种群利用产生的声波搜索猎物和控制飞行方向的特征来实现

  • Python实现异常检测LOF算法的示例代码

    目录 背景 LOF算法 1.k邻近距离 2.k距离领域 3.可达距离 4.局部可达密度 5.局部异常因子 LOF算法流程 LOF优缺点 Python实现LOF PyOD Sklearn 大家好,我是东哥. 本篇和大家介绍一个经典的异常检测算法:局部离群因子(Local Outlier Factor),简称LOF算法. 背景 Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et. al. 2000), 文章发表于 SIGMOD 2000, 到目前已经有 3

  • Python&Matlab实现灰狼优化算法的示例代码

    目录 1 灰狼优化算法基本思想 2 灰狼捕食猎物过程 2.1 社会等级分层 2.2 包围猎物 2.3 狩猎 2.4 攻击猎物 2.5 寻找猎物 3 实现步骤及程序框图 3.1 步骤 3.2 程序框图 4 Python代码实现 5 Matlab实现 1 灰狼优化算法基本思想 灰狼优化算法是一种群智能优化算法,它的独特之处在于一小部分拥有绝对话语权的灰狼带领一群灰狼向猎物前进.在了解灰狼优化算法的特点之前,我们有必要了解灰狼群中的等级制度. 灰狼群一般分为4个等级:处于第一等级的灰狼用α表示,处于第

  • Python实现孤立随机森林算法的示例代码

    目录 1 简介 2 孤立随机森林算法 2.1 算法概述 2.2 原理介绍 2.3 算法步骤 3 参数讲解 4 Python代码实现 5 结果 1 简介 孤立森林(isolation Forest)是一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或基尼指数来选择. 2 孤立随机森林算法 2.1 算法概述 Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好

  • Python中八大图像特效算法的示例详解

    目录 0写在前面 1毛玻璃特效 2浮雕特效 3油画特效 4马赛克特效 5素描特效 6怀旧特效 7流年特效 8卡通特效 0 写在前面 图像特效处理是基于图像像素数据特征,将原图像进行一定步骤的计算——例如像素作差.灰度变换.颜色通道融合等,从而达到期望的效果.图像特效处理是日常生活中应用非常广泛的一种计算机视觉应用,出现在各种美图软件中,这些精美滤镜背后的数学原理都是相通的,本文主要介绍八大基本图像特效算法,在这些算法基础上可以进行二次开发,生成更高级的滤镜. 本文采用面向对象设计,定义了一个图像

  • python 实现朴素贝叶斯算法的示例

    特点 这是分类算法贝叶斯算法的较为简单的一种,整个贝叶斯分类算法的核心就是在求解贝叶斯方程P(y|x)=[P(x|y)P(y)]/P(x) 而朴素贝叶斯算法就是在牺牲一定准确率的情况下强制特征x满足独立条件,求解P(x|y)就更为方便了 但基本上现实生活中,没有任何关系的两个特征几乎是不存在的,故朴素贝叶斯不适合那些关系密切的特征 from collections import defaultdict import numpy as np from sklearn.datasets import

  • Python实现12种降维算法的示例代码

    目录 为什么要进行数据降维 数据降维原理 主成分分析(PCA)降维算法 其它降维算法及代码地址 1.KPCA(kernel PCA) 2.LDA(Linear Discriminant Analysis) 3.MDS(multidimensional scaling) 4.ISOMAP 5.LLE(locally linear embedding) 6.t-SNE 7.LE(Laplacian Eigenmaps) 8.LPP(Locality Preserving Projections) 网

  • Python+OpenCV实现分水岭分割算法的示例代码

    目录 前言 1.使用分水岭算法进行分割 2.Watershed与random walker分割对比 前言 分水岭算法是用于分割的经典算法,在提取图像中粘连或重叠的对象时特别有用,例如下图中的硬币. 使用传统的图像处理方法,如阈值和轮廓检测,我们将无法从图像中提取每一个硬币,但通过利用分水岭算法,我们能够检测和提取每一个硬币. 在使用分水岭算法时,我们必须从用户定义的标记开始.这些标记可以通过点击手动定义,或者我们可以使用阈值和/或形态学操作等方法自动或启发式定义它们. 基于这些标记,分水岭算法将

随机推荐