Python greenlet实现原理和使用示例

最近开始研究Python的并行开发技术,包括多线程,多进程,协程等。逐步整理了网上的一些资料,今天整理了一下greenlet相关的资料。

并发处理的技术背景

并行化处理目前很受重视, 因为在很多时候,并行计算能大大的提高系统吞吐量,尤其在现在多核多处理器的时代, 所以像lisp这种古老的语言又被人们重新拿了起来, 函数式编程也越来越流行。 介绍一个python的并行处理的一个库: greenlet。 python 有一个非常有名的库叫做 stackless ,用来做并发处理, 主要是弄了个叫做tasklet的微线程的东西, 而greenlet 跟stackless的最大区别是, 他很轻量级?不够, 最大的区别是greenlet需要你自己来处理线程切换, 就是说,你需要自己指定现在执行哪个greenlet再执行哪个greenlet。

greenlet的实现机制

以前使用python开发web程序,一直使用的是fastcgi模式.然后每个进程中启动多个线程来进行请求处理.这里有一个问题就是需要保证每个请求响应时间都要特别短,不然只要多请求几次慢的就会让服务器拒绝服务,因为没有线程能够响应请求了.平时我们的服务上线都会进行性能测试的,所以正常情况没有太大问题.但是不可能所有场景都测试到.一旦出现就会让用户等好久没有响应.部分不可用导致全部不可用.后来转换到了coroutine,python 下的greenlet.所以对它的实现机制做了一个简单的了解.

每个greenlet都只是heap中的一个python object(PyGreenlet).所以对于一个进程你创建百万甚至千万个greenlet都没有问题.

代码如下:

typedef struct _greenlet {
 PyObject_HEAD
 char* stack_start;
 char* stack_stop;
 char* stack_copy;
 intptr_t stack_saved;
 struct _greenlet* stack_prev;
 struct _greenlet* parent;
 PyObject* run_info;
 struct _frame* top_frame;
 int recursion_depth;
 PyObject* weakreflist;
 PyObject* exc_type;
 PyObject* exc_value;
 PyObject* exc_traceback;
 PyObject* dict;
} PyGreenlet;

每一个greenlet其实就是一个函数,以及保存这个函数执行时的上下文.对于函数来说上下文也就是其stack..同一个进程的所有的greenlets共用一个共同的操作系统分配的用户栈.所以同一时刻只能有栈数据不冲突的greenlet使用这个全局的栈.greenlet是通过stack_stop,stack_start来保存其stack的栈底和栈顶的,如果出现将要执行的greenlet的stack_stop和目前栈中的greenlet重叠的情况,就要把这些重叠的greenlet的栈中数据临时保存到heap中.保存的位置通过stack_copy和stack_saved来记录,以便恢复的时候从heap中拷贝回栈中stack_stop和stack_start的位置.不然就会出现其栈数据会被破坏的情况.所以应用程序创建的这些greenlet就是通过不断的拷贝数据到heap中或者从heap中拷贝到栈中来实现并发的.对于io型的应用程序使用coroutine真的非常舒服.

下面是greenlet的一个简单的栈空间模型(from greenlet.c)

代码如下:

A PyGreenlet is a range of C stack addresses that must be
saved and restored in such a way that the full range of the
stack contains valid data when we switch to it.

Stack layout for a greenlet:

|     ^^^       |
               |  older data   |
               |               |
  stack_stop . |_______________|
        .      |               |
        .      | greenlet data |
        .      |   in stack    |
        .    * |_______________| . .  _____________  stack_copy + stack_saved
        .      |               |     |             |
        .      |     data      |     |greenlet data|
        .      |   unrelated   |     |    saved    |
        .      |      to       |     |   in heap   |
 stack_start . |     this      | . . |_____________| stack_copy
               |   greenlet    |
               |               |
               |  newer data   |
               |     vvv       |

下面是一段简单的greenlet代码.

代码如下:

from greenlet import greenlet

def test1():
    print 12
    gr2.switch()
    print 34

def test2():
    print 56
    gr1.switch()
    print 78

gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

目前所讨论的协程,一般是编程语言提供支持的。目前我所知提供协程支持的语言包括python,lua,go,erlang, scala和rust。协程不同于线程的地方在于协程不是操作系统进行切换,而是由程序员编码进行切换的,也就是说切换是由程序员控制的,这样就没有了线程所谓的安全问题。

所有的协程都共享整个进程的上下文,这样协程间的交换也非常方便。

相对于第二种方案(I/O多路复用),使得使用协程写的程序将更加的直观,而不是将一个完整的流程拆分成多个管理的事件处理。协程的缺点可能是无法利用多核优势,不过,这个可以通过协程+进程的方式来解决。

协程可以用来处理并发来提高性能,也可以用来实现状态机来简化编程。我用的更多的是第二个。去年年底接触python,了解到了python的协程概念,后来通过pycon china2011接触到处理yield,greenlet也是一个协程方案,而且在我看来是更可用的一个方案,特别是用来处理状态机。

目前这一块已经基本完成,后面抽时间总结一下。

总结一下:

1)多进程能够利用多核优势,但是进程间通信比较麻烦,另外,进程数目的增加会使性能下降,进程切换的成本较高。程序流程复杂度相对I/O多路复用要低。

2)I/O多路复用是在一个进程内部处理多个逻辑流程,不用进行进程切换,性能较高,另外流程间共享信息简单。但是无法利用多核优势,另外,程序流程被事件处理切割成一个个小块,程序比较复杂,难于理解。

3)线程运行在一个进程内部,由操作系统调度,切换成本较低,另外,他们共享进程的虚拟地址空间,线程间共享信息简单。但是线程安全问题导致线程学习曲线陡峭,而且易出错。

4)协程有编程语言提供,由程序员控制进行切换,所以没有线程安全问题,可以用来处理状态机,并发请求等。但是无法利用多核优势。

上面的四种方案可以配合使用,我比较看好的是进程+协程的模式。

(0)

相关推荐

  • python元组操作实例解析

    本文实例讲述了python元组操作方法,分享给大家供大家参考.具体分析如下: 一般来说,python的函数用法挺灵活的,和c.php的用法不太一样,和js倒是挺像的. 在照着操作时,可以发现一个很神奇的现象: >>> t = (1, 3, 'b') >>> q = t + ((3, 'abc')) >>> q (1, 3, 'b', 3, 'abc') 这里我预料的应该是(1, 3, 'b', (3, 'abc')),但是结果却是(1, 3, 'b',

  • Python中的类学习笔记

    Python使用中面向对象的语言,支持继承.多态: 定义一个Person类: 复制代码 代码如下: >>> class Person: ... def sayHello(self): ... print('hello') ... >>> Person.sayHello(None) hello >>> Person().sayHello() hello 可以修改Person的类方法 复制代码 代码如下: >>> def hack_say

  • Python函数嵌套实例

    在Python中函数可以作为参数进行传递,而也可以赋值给其他变量(类似Javascript,或者C/C++中的函数指针): 类似Javascript,Python支持函数嵌套,Javascript嵌套函数的应用模式对Python适用: 复制代码 代码如下: >>> def multiplier(factor): ... def multiple(number): ... return number * factor ... return multiple ... >>>

  • python迭代器的使用方法实例

    什么是迭代器? 迭代器是带有next方法的简单对象,当然也要实现__iter__函数.迭代器能在一序列的值上进行迭代,当没有可供迭代时,next方法就会引发StopIteration 的异常.python中有很多的对象都是迭代器,例如:列表,元素,字符串,文件,映射,集合 如何使用迭代器? 1. for 变量 in 可迭代对象 复制代码 代码如下: list1 = [1,2,3,4,5] for ele in list1:    print ele, 结果为:1 2 3 4 5 2. if 变量

  • Python中的自定义函数学习笔记

    定义一个什么都不做的函数 复制代码 代码如下: >>> def a(): ... pass ... >>> def printHello(): ... print("hello") ... >>> printHello() hello >>> callable(printHello) True 顾名思义,callable函数用于判断函数是否可以调用: 有书上说,callable在Python3.0中已经不再使用,而

  • Python中unittest用法实例

    本文实例讲述了Python中unittest的用法,分享给大家供大家参考.具体用法分析如下: 1. unittest module包含了编写运行unittest的功能,自定义的test class都要集成unitest.TestCase类,test method要以test开头,运行顺序根据test method的名字排序,特殊方法: ① setup():每个测试函数运行前运行 ② teardown():每个测试函数运行完后执行 ③ setUpClass():必须使用@classmethod 装

  • Python中itertools模块用法详解

    本文实例讲述了Python中itertools模块用法,分享给大家供大家参考.具体分析如下: 一般来说,itertools模块包含创建有效迭代器的函数,可以用各种方式对数据进行循环操作,此模块中的所有函数返回的迭代器都可以与for循环语句以及其他包含迭代器(如生成器和生成器表达式)的函数联合使用. chain(iter1, iter2, ..., iterN): 给出一组迭代器(iter1, iter2, ..., iterN),此函数创建一个新迭代器来将所有的迭代器链接起来,返回的迭代器从it

  • Python中bisect的用法

    本文实例讲述了Python中bisect的用法,是一个比较常见的实用技巧.分享给大家供大家参考.具体分析如下: 一般来说,Python中的bisect用于操作排序的数组,比如你可以在向一个数组插入数据的同时进行排序.下面的代码演示了如何进行操作: import bisect import random random.seed(1) print('New pos contents') print('-----------------') l=[] for i in range(1,15): r=r

  • python迭代器实例简析

    本文实例讲述了python迭代器的简单用法,分享给大家供大家参考.具体分析如下: 生成器表达式是用来生成函数调用时序列参数的一种迭代器写法 生成器对象可以遍历或转化为列表(或元组等数据结构),但不能切片(slicing).当函数的唯一的实参是可迭代序列时,便可以去掉生成器表达式两端>的圆括号,写出更优雅的代码: >>>> sum(i for i in xrange(10)) 45 sum声明: sum(iterable[, start]) Sums start and the

  • python的迭代器与生成器实例详解

    本文以实例详解了python的迭代器与生成器,具体如下所示: 1. 迭代器概述:   迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.   1.1 使用迭代器的优点   对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值).但对于无法随机访问的数据结构(比

  • Python中实现两个字典(dict)合并的方法

    本文实例讲述了Python中实现两个字典(dict)合并的方法,分享给大家供大家参考.具体方法如下: 现有两个字典dict如下: dict1={1:[1,11,111],2:[2,22,222]} dict2={3:[3,33,333],4:[4,44,444]} 合并两个字典得到类似: {1:[1,11,111],2:[2,22,222],3:[3,33,333],4:[4,44,444]} 方法1: dictMerged1=dict(dict1.items()+dict2.items())

随机推荐