python中dot函数运算过程总结

目录
  • 基本简介
  • 1. 向量内积
  • 2. 矩阵乘法运算
    • 2.1如下单个数的dot函数运算所示:
    • 2.2如下一维数组的dot函数运算所示:
    • 2.3如下二维数组的dot函数运算所示:
    • 2.4如下二维数组与三维数组的dot函数运算:
    • 2.5如下多维数组的dot函数运算所示:
  • 总结

本文结合其他博主的一些介绍总结了dot函数运算过程

基本简介

dot函数为numpy库下的一个函数,主要用于矩阵的乘法运算,其中包括:向量内积、多维矩阵乘法和矩阵与向量的乘法。

1. 向量内积

向量其实是一维的矩阵,两个向量进行内积运算时,需要保证两个向量包含的元素个数是相同的。

例1:

import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7])
y = np.array([2, 3, 4, 5, 6, 7, 8])
result = np.dot(x, y)
print(result)

输出结果:

168

计算过程就是将向量中对应元素相乘,再相加所得。即普通的向量乘法运算。

2. 矩阵乘法运算

注意:

1.数组的运算是元素级的,数组相乘的结果是各对应元素的积组成的数组,而对于矩阵而言,需要求的是点积

2.两个矩阵(x, y)如果可以进行乘法运算,需要满足以下条件:

x为 m×n 阶矩阵,y为 n×p 阶矩阵,

则相乘的结果 result 为 m×p 阶矩阵。例子如下

例2:

import numpy as np
x = np.array([[1, 2, 3],
[3, 4, 4]])
y = np.array([[0, 1, 1, 1],
[1, 2, 0, 1],
[0, 0, 2, 1]])
result = np.dot(x, y)
print(result)
print("x阶数:" + str(x.shape))
print("y阶数:" + str(y.shape))
print("result阶数:" + str(result.shape))

结果为:

[[ 2 5 7 6]

[ 4 11 11 11]]

x阶数:(2, 3)

y阶数:(3, 4)

result阶数:(2, 4)

下面我们来分析一下一维数组到多维数组之间的运算过程

2.1如下单个数的dot函数运算所示:

np.dot(5,8)40

2.2如下一维数组的dot函数运算所示:

#如果arr1和arr2都是一维数组,那么它返回的就是向量的内积

arr1=np.array([2,3])
arr2=np.array([4,5])
np.dot(arr1,arr2)
#23

如图所示:

2.3如下二维数组的dot函数运算所示:

#如果arr5 和arr6都是二维数组,那么它返回的是矩阵乘法

arr5=np.array([[2,3],[4,5]])
arr6=np.array([[6,7],[8,9]])
np.dot(arr5,arr6)
"""
array([36,4],
          [64,73])
"""

运算过程如下所示:

2.4如下二维数组与三维数组的dot函数运算:

#arr7二维数组与arr8三维数组的dot函数矩阵运算

arr7=np.array([[2,3,4],[5,6,7]])
arr8=np.array([[0,1,2],[3,4,5],[6,7,8]])
np.dot(arr7,arr8)
"""
array([33,42,51],[60,78,96])
"""

2.5如下多维数组的dot函数运算所示:

#多维数组的dot函数矩阵运算
arr12=np.array([[0,1,2],[3,4,5],[6,7,8],[9,10,11]])
arr13=np.array([[0,1,2],[3,4,5],[6,7,8]])
np.dot(arr12,arr13)
"""
array([15,18,21],
        [42,54,66],
        [69,90,111],
        [96,126,156])
"""

注意:

dot()函数可以通过NumPy库调用,也可以由数组实例对象进行调用。例如:a.dot(b) 与 np.dot(a,b)效果相同。但矩阵积计算不遵循交换律,np.dot(a,b) 和 np.dot(b,a) 得到的结果是不一样的。

总结

到此这篇关于python中dot函数运算的文章就介绍到这了,更多相关python dot函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python中dot函数运算过程总结

    目录 基本简介 1. 向量内积 2. 矩阵乘法运算 2.1如下单个数的dot函数运算所示: 2.2如下一维数组的dot函数运算所示: 2.3如下二维数组的dot函数运算所示: 2.4如下二维数组与三维数组的dot函数运算: 2.5如下多维数组的dot函数运算所示: 总结 本文结合其他博主的一些介绍总结了dot函数运算过程 基本简介 dot函数为numpy库下的一个函数,主要用于矩阵的乘法运算,其中包括:向量内积.多维矩阵乘法和矩阵与向量的乘法. 1. 向量内积 向量其实是一维的矩阵,两个向量进行

  • python中分组函数groupby和分组运算函数agg的使用

    目录 groupby: agg: 今天来介绍pandas中一个很有用的函数groupby,其实和hive中的groupby的效果是一样的,区别在于两种语言的写法问题.groupby在Python中的分组统计中很有用~ groupby: 首先创建数据: import pandas as pd import numpy as np df = pd.DataFrame({'A': ['a', 'b', 'a', 'c', 'a', 'c', 'b', 'c'], 'B': [2, 7, 1, 3, 3

  • python中format函数与round函数的区别

    目录 前言 不同之处 round函数 进位原则 示例 format函数 示例 总结 前言 在对数据进行处理时我们常常会用到format与round函数.二者都能保留若干位小数,但在处理过程上稍有不同. 不同之处 返回类型不同:format函数进行格式化后返回结果的数据类型是str字符串,round函数返回结果的数据类型是float浮点型 进位不同:保留若干位小数时,format遵循的是四舍五入原则,而round并不遵循该原则,round进位原则为四舍六入次偶进. 位数保留不同:规定如保留6位小数

  • Python中input()函数的用法实例小结

    目录 一:input()函数的输入机制 二:input()函数常涉及的强制类型转换 三:带提示的input()函数及其常见问题 四:利用input()一次性输入多个变量值 附:input()函数结果的强制转换 总结 一:input()函数的输入机制 我们编写的大部分程序,都需要读取输入并对其进行处理,而基本的输入操作是从键盘键入数据.Python从键盘键入数据,大多使用其内置的input()函数.但是,不同于程序设计初学者常接触的C和C++,我们不需要在输入之时规定变量的类型.相反,我们可以非常

  • 关于python中不同函数读取图片格式的区别浅析

    目录 前言:关于uint8和float型数据 一.skimage.io. 二.imageio 补充:python处理图像转化为uint8格式 总结 前言:关于uint8和float型数据 为了节省存储空间,图像一般存储在一种特殊的数据类型——uint8(8位无符号整数)中,以此方式存储的图像称作8位图像. imread把灰度图像存入一个8位矩阵,当为RGB图像时,就存入8位RGB矩阵中. 因此,通过matlab以及各种python包(skimage,imageio)读入图像的数据类型都是uint

  • python中map()函数的使用方法示例

    前言 在python里有一个函数map(),它有点高大上的感觉.本文将详细给大家介绍python中map()函数使用的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: 或许你已经看过GOOGLE最挣钱的论文: "MapReduce: Simplified Data Processing on Large Clusters" Google的那篇MapReduce论文里说:Our abstraction is inspired by the map and redu

  • python中reduce()函数的使用方法示例

    前言 本文主要给大家介绍了关于python中reduce()函数使用的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: reduce()函数在库functools里,如果要使用它,要从这个库里导入.reduce函数与map函数有不一样地方,map操作是并行操作,reduce函数是把多个参数合并的操作,也就是从多个条件简化的结果,在计算机的算法里,大多数情况下,就是为了简单化.比如识别图像是否是一只猫,那么就是从众多的像素里提炼出来一个判断:是或否.可能是几百万个像素,就只

  • python中的函数递归和迭代原理解析

    这篇文章主要介绍了python中的函数递归和迭代原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.递归 1.递归的介绍 什么是递归? 程序调用自身的编程技巧称为递归( recursion).递归做为一种算法在程序设计语言中广泛应用. 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大

  • 详解python中groupby函数通俗易懂

    一.groupby 能做什么? python中groupby函数主要的作用是进行数据的分组以及分组后地组内运算! 对于数据的分组和分组运算主要是指groupby函数的应用,具体函数的规则如下: df[](指输出数据的结果属性名称).groupby([df[属性],df[属性])(指分类的属性,数据的限定定语,可以有多个).mean()(对于数据的计算方式--函数名称) 举例如下: print(df["评分"].groupby([df["地区"],df["类

  • Python中zip函数如何使用

    介绍 zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表. ps. 如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表. 例子 a = [1,2,3] b = [4,5,6] c = [4,5,6,7,8] zipped = zip(a,b) # 打包为元组的列表 # 输出:[(1, 4), (2, 5), (3, 6)] zip(a,c) # 元素个数与最短的列表一致 # 输出:[(

随机推荐