Python实现统计图像连通域的示例详解

目录
  • 数组统计函数
  • 连通域标记
  • 连通域统计

数组统计函数

ndimage提供一系列函数,可以计算标注后的数组的相关特征,比如最值、均值、均方根等。

下列函数,如果未作其他说明,那么就有3个参数,分别是(input, labels=None, index=None),其中input为输入数组;labels为input的标签,形状和input相同;index为整数或者整数数列,为用于计算的label。

函数 物理量 函数 物理量
mean 平均值 center_of_mass 质心
maximum 最大值 maximum_position 最大值位置
minimum 最小值 minimum_position 最小值位置
median 中位数 extrema 最大值、最小值,及其位置
sum_labels 求和
variance 方差 standard_deviation 标准差

示例如下

import numpy as np
import scipy.ndimage as sn

x = np.random.randint(10, size=(3,3))
print(x)
'''
[[0 3 5]
 [9 3 1]
 [1 5 7]]
'''
sn.center_of_mass(x)    # (1.1470588235294117, 1.088235294117647)
sn.extrema(x)           # (0, 9, (0, 0), (1, 0))

连通域标记

通过label函数,可以对数组中的连通区域进行标注,效果如下

from scipy.ndimage import label
import numpy as np
a = np.array([[0,0,1,1,0,0],
              [0,0,0,1,0,0],
              [1,1,0,0,1,0],
              [0,0,0,1,0,0]])
labels, N = label(a)
print(labels)
'''
[[0 0 1 1 0 0]
 [0 0 0 1 0 0]
 [2 2 0 0 3 0]
 [0 0 0 4 0 0]]
'''
print(N)    4

在label函数中,还有一个用于规范何为“连通”的参数,即structure,其数据类型为二值数组,其维度与输入的input相同。

在上面的示例中,连通域1,3,4尽管没有上下左右的联系,但在对角线上是有交集的,通过调整structure参数,可以提供一种将这三个区域连在一起的连通域方案。

stru = np.ones([3,3])
bLab, bN = label(a, stru)
print(bLab)
‘'‘
[[0 0 1 1 0 0]
 [0 0 0 1 0 0]
 [2 2 0 0 1 0]
 [0 0 0 1 0 0]]
'‘'

可见,这次只选出了两组连通域。

连通域统计

前面提到的所有统计函数,形参都有三个,分别是input, labels, index,其中input为输入数组,labels为将要处理的连通域,index为准备处理的连通域序号。

np.random.seed(42)
test = np.random.rand(5,5)
test[test<0.8] = 0
labels, N = sn.label(test)
print(N)        # 2
print(labels)    #
‘'‘
[[0 1 0 0 0]
 [0 0 2 0 0]
 [0 2 2 0 0]
 [0 0 0 0 0]
 [0 0 0 0 0]]
'‘'
print(test)
‘'‘
[[0.         0.95071431 0.         0.         0.        ]
 [0.         0.         0.86617615 0.         0.        ]
 [0.         0.96990985 0.83244264 0.         0.        ]
 [0.         0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.        ]]
'‘'

接下来通过连通域统计函数,针对某个连通域进行计算

>>> sn.mean(test, labels, 1)
0.9507143064099162
>>> sn.mean(test, labels, 2)
0.8895095462457837
>>> sn.mean(test, labels, 0)
0.0

当index=1时,会找出labels中为1的位置,然后把test中这些位置的元素求平均。

到此这篇关于Python实现统计图像连通域的示例详解的文章就介绍到这了,更多相关Python统计图像连通域内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 使用OpenCV获取图片连通域数量,并用不同颜色标记函

    一,原图和效果图 二,代码 //#########################产生随机颜色######################### cv::Scalar icvprGetRandomColor() { uchar r = 255 * (rand() / (1.0 + RAND_MAX)); uchar g = 255 * (rand() / (1.0 + RAND_MAX)); uchar b = 255 * (rand() / (1.0 + RAND_MAX)); return

  • python验证码识别教程之利用投影法、连通域法分割图片

    前言 今天这篇文章主要记录一下如何切分验证码,用到的主要库就是Pillow和Linux下的图像处理工具GIMP.首先假设一个固定位置和宽度.无粘连.无干扰的例子学习一下如何使用Pillow来切割图片. 使用GIMP打开图片后,按 加号 放大图片,然后点击View->Show Grid来显示网格线: 其中,每个正方形边长为10像素,所以数字1切割坐标为左20.上20.右40.下70.以此类推可以知道剩下3个数字的切割位置. 代码如下: from PIL import Image p = Image

  • 使用OpenCV去除面积较小的连通域

    这是后期补充的部分,和前期的代码不太一样 效果图 源代码 //测试 void CCutImageVS2013Dlg::OnBnClickedTestButton1() { vector<vector<Point> > contours; //轮廓数组 vector<Point2d> centers; //轮廓质心坐标 vector<vector<Point> >::iterator itr; //轮廓迭代器 vector<Point2d&g

  • OpenCV实现图像连通域

    图像的连通域是指图像中具有相同像素值并且位置相邻的像素组成的区域,连通域分析是指在图像中寻找出彼此互相独立的连通域并将其标记出来. 一般情况下,一个连通域内只包含一个像素值,因此为了防止像素值波动对提取不同连通域的影响,连通域分析常处理的是二值化后的图像. 4-邻域和8-邻域: 常用的图像邻域分析法有两遍扫描法和种子填充法.两遍扫描法会遍历两次图像,第一次遍历图像时会给每一个非0像素赋予一个数字标签,当某个像素的上方和左侧邻域内的像素已经有数字标签时,取两者中的最小值作为当前像素的标签,否则赋予

  • OpenCV连通域数量统计学习示例

    目录 学习目标: 核心代码 代码执行说明 学习目标: 1.输入图像为分割结果图像 2.根据种子填充法思路,遍历图像,得到每个连通域外接矩形坐标信息.面积信息 核心代码 /* Input: src: 待检测连通域的二值化图像 Output: dst: 标记后的图像 featherList: 连通域特征的清单(可自行查阅文档) return: 连通域数量. */ int connectionDetect(Mat &src, Mat &dst, vector<Feather> &am

  • OpenCV清除小面积连通域的实现方法

    场景需求 使用OpenCV,往往遇到这类场景:需要清除目标图像中比较小的噪声区,保留主要区域信息. 特此分享自己写的一个简单的清除小面积连通域函数,逻辑比较简单,给大家留出了足够的发展空间,根据自身场景需求进行调整. 原理可以简单归结为:搜索图像的连通区轮廓->遍历各个连通区->基于阈值删除面积较小的连通区 运行速度方面,我没单独测试过这个单元,大家如果试过之后太慢可以评论告诉我哦~ 反正平常我工作跑那种2000*2000的图像,这个函数的耗时几乎忽略不计... C++实现代码 /** * @

  • Python实现标记数组的连通域

    目录 连通域标记 structure参数 操作连通域 定位连通域 连通域标记 通过label函数,可以对数组中的连通区域进行标注,效果如下 from scipy.ndimage import label import numpy as np a = np.array([[0,0,1,1,0,0], [0,0,0,1,0,0], [1,1,0,0,1,0], [0,0,0,1,0,0]]) labels, N = label(a) print(labels) ''' [[0 0 1 1 0 0]

  • Python实现统计图像连通域的示例详解

    目录 数组统计函数 连通域标记 连通域统计 数组统计函数 ndimage提供一系列函数,可以计算标注后的数组的相关特征,比如最值.均值.均方根等. 下列函数,如果未作其他说明,那么就有3个参数,分别是(input, labels=None, index=None),其中input为输入数组:labels为input的标签,形状和input相同:index为整数或者整数数列,为用于计算的label. 函数 物理量 函数 物理量 mean 平均值 center_of_mass 质心 maximum

  • Python数学建模StatsModels统计回归之线性回归示例详解

    目录 1.背景知识 1.1 插值.拟合.回归和预测 1.2 线性回归 2.Statsmodels 进行线性回归 2.1 导入工具包 2.2 导入样本数据 2.3 建模与拟合 2.4 拟合和统计结果的输出 3.一元线性回归 3.1 一元线性回归 Python 程序: 3.2 一元线性回归 程序运行结果: 4.多元线性回归 4.1 多元线性回归 Python 程序: 4.2 多元线性回归 程序运行结果: 5.附录:回归结果详细说明 1.背景知识 1.1 插值.拟合.回归和预测 插值.拟合.回归和预测

  • Python中图像算术运算的示例详解

    目录 介绍 算术运算:图像相加 算术运算:图像减法 位运算 介绍 还记得你在小学时学习如何加减数字吗?现在,你也可以对图像做同样的事情! 输入图像可以进行算术运算,例如加法.减法和按位运算(AND.OR.NOT.XOR).这些操作可以帮助提高输入照片的质量. 在本文中,你将了解使用 OpenCV Python 包对图像执行算术和按位运算的步骤.让我们开始吧! 对图像进行算术运算是什么意思? 因此,假设我们希望合并两张单独的照片中的两个像素.我们怎样才能将它们合并? 让我们想象以下场景.第一个像素

  • python人工智能使用RepVgg实现图像分类示例详解

    目录 摘要 安装包 安装timm 数据增强Cutout和Mixup EMA 项目结构 计算mean和std 生成数据集 摘要 RepVgg通过结构重参数化让VGG再次伟大. 所谓“VGG式”指的是: 没有任何分支结构.即通常所说的plain或feed-forward架构. 仅使用3x3卷积. 仅使用ReLU作为激活函数. RepVGG的更深版本达到了84.16%正确率!反超若干transformer! RepVgg是如何到的呢?简单地说就是: 首先, 训练一个多分支模型 然后,将多分支模型等价转

  • python计算机视觉opencv卡号识别示例详解

    目录 一.模板预处理 1.将模板设置为二值图 2.检测模板的轮廓 3.对模板轮廓排序,并将数字和轮廓一一对应,以字典存储 4.备注 二.图片预处理 1.初始化卷积核 2.图片预处理第一部分 3.图像预处理第二部分 三.轮廓处理 1.大轮廓过滤 2.小轮廓分割 模板图片如下: 需识别的图片如下: 一.模板预处理 1.将模板设置为二值图 2.检测模板的轮廓 3.对模板轮廓排序,并将数字和轮廓一一对应,以字典存储 排序的函数如下: 排序并存储: 4.备注 ①每一个数字对应的是二值图截出来的那个数字图的

  • Python实现过迷宫小游戏示例详解

    目录 前言 开发工具 环境搭建 原理简介 主要代码 前言 今天为大家带来解闷用的过迷宫小游戏分享给大家好了.让我们愉快地开始吧~ 开发工具 Python版本: 3.6.4 相关模块: pygame模块: 以及一些Python自带的模块. 环境搭建 安装Python并添加到环境变量,pip安装需要的相关模块即可. 原理简介 游戏规则: 玩家通过↑↓←→键控制主角行动,使主角从出发点(左上角)绕出迷宫,到达终点(右下角)即为游戏胜利. 逐步实现: 首先,当然是创建迷宫啦,为了方便,这里采用随机生成迷

  • Python matplotlib实现图表主题变换示例详解

    目录 一.更换主题样式 二.线条变换 三.将图表保存成本地图片 四.添加辅助线 五.调整画图的大小和清晰度 六.使用动漫风格 七.横坐标的倾斜度 八.横纵坐标轴转换 有时候因为jupyter notebook本身的主题不同,导致画图的时候与图表的颜色冲突,看不清坐标轴,这时候可以通过更换坐标轴风格来解决: 一.更换主题样式 plt.style.available ## 主题如下: ['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic

  • Python中字典常用操作的示例详解

    目录 前言 初始化 合并字典 字典推导式 Collections 标准库 字典转 JSON 字典转 Pandas 前言 字典是Python必用且常用的数据结构,本文梳理常用的字典操作,看这个就够了,涉及: 初始化 合并字典 字典推导式 Collections 标准库 字典转JSON 字典转Pandas 初始化 # 最常用这种 my_object = { "a": 5, "b": 6 } # 如果你不喜欢写大括号和双引号: my_object = dict(a=5,

  • python进阶collections标准库使用示例详解

    目录 前言 namedtuple namedtuple的由来 namedtuple的格式 namedtuple声明以及实例化 namedtuple的方法和属性 OrderedDict popitem(last=True) move_to_end(key, last=True) 支持reversed 相等测试敏感 defaultdict 小例子1 小例子2 小例子3 Counter对象 创建方式 elements() most_common([n]) 应用场景 deque([iterable[,

  • 对python 生成拼接xml报文的示例详解

    最近临时工作要生成xml报名,通过MQ接口发送.简单小程序. 自增长拼成xml报文 Test_001.py # encoding=utf-8 import time orderId = '' s1= "\n" # for ID in range(1,5): item1 = "<item>" + \ "<orderID>" + str(ID) + "</orderID>" + \ "

随机推荐