Python numpy有哪些常用数据类型

目录
  • 常见数据类型介绍
  • 创建数据类型

常见数据类型介绍

Python 原生的数据类型相对较少, bool、int、float、str等。这在不需要关心数据在计算机中表示的所有方式的应用中是方便的。然而,对于科学计算,通常需要更多的控制。为了加以区分 numpy 在这些类型名称末尾都加了“_”。

类型 备注 说明
bool8 = bool_(加下滑线代表为最大) 8位(一个字节八位) 布尔类型
int8 = byte 8位 整型
int16 = short 16位 整型
int32 = intc 32位 整型
int_ = int64 = long = int0 = intp 64位 整型
uint8 = ubyte 8位 无符号整型
uint16 = ushort 16位 无符号整型
uint32 = uintc 32位 无符号整型
uint64 = uintp = uint0 = uint 64位 无符号整型
float16 = half 16位 浮点型
float32 = single 32位 浮点型
float_ = float64 = double 64位 浮点型
str_ = unicode_ = str0 = unicode Unicode 字符串
datetime64 日期时间类型
timedelta64 表示两个时间之间的间隔

创建数据类型

numpy 的数值类型实际上是 dtype 对象的实例。

class dtype(object):
    def __init__(self, obj, align=False, copy=False):
        pass

数据类型对象 (dtype)

数据类型对象(numpy.dtype 类的实例)用来描述与数组对应的内存区域是如何使用,它描述了数据的以下几个方面::

  • 数据的类型(整数,浮点数或者 Python 对象)
  • 数据的大小(例如, 整数使用多少个字节存储)
  • 数据的字节顺序(小端法或大端法)
  • 在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
  • 如果数据类型是子数组,那么它的形状和数据类型是什么。

字节顺序是通过对数据类型预先设定 < 或 > 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。

dtype 对象是使用以下语法构造的:

numpy.dtype(object, align, copy)
  • object - 要转换为的数据类型对象
  • align - 如果为 true,填充字段使其类似 C 的结构体。
  • copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用

每个内建类型都有一个唯一定义它的字符代码,如下:

字符 对应类型 备注
b boolean 'b1'(将这个字符代码作为参数传给dtype,则会建立boolean实例)
i signed integer 'i1', 'i2', 'i4', 'i8'
u unsigned integer 'u1', 'u2' ,'u4' ,'u8'
f floating-point 'f2', 'f4', 'f8'
c complex floating-point
m timedelta64 表示两个时间之间的间隔
M datetime64 日期时间类型
O object
S (byte-)string S3表示长度为3的字符串 (传入的参数 必须是大写S)Bytes 代表的是(二进制)数字的序列,只不过在是通过 ASCII 编码之后才是我们看到的字符形式
U Unicode Unicode 字符串 (传入的参数 必须是大写U)
V void

结构化数据类型的使用,类型字段和对应的实际类型将被创建:

dt = np.dtype([("age",np.int_)])
dt

a = np.array([(31,),(27,),(36,),(28,),(18,)],dtype=dt)
a["age"]

定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象。

student = np.dtype([("name","S30"),("age",np.int_),("marks","f4")])
student

student = np.dtype([("name","S30"),("age",np.int_),("marks","f4")])
a = np.array([("STZZ",31,0.3),("WJ",22,0.9),("WTX",27,1.0)],dtype=student)
a
a["name"]
a["age"]
a["marks"]

到此这篇关于Python numpy有哪些常用数据类型的文章就介绍到这了,更多相关Python numpy内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 在python中对于bool布尔值的取反操作

    背景 根据公司业务的需求,需要做一个对于mysql数据库的大批量更新.脚本嘛也是干干单单.使用了redis的队列做缓存,可以异步并发的多任务进行更新. 有点难受的地方在于,请求访问时,因为一些网速,速率之内的原因,导致正常的数据会请求失败.处理的方法呢,就是多请求几次. 不过,麻烦的地方在于,每次重新请求,都要讲原来get,和put的key转换.手动更换起来麻烦的一批. 所以就想做一个自动的转换小demo. 成熟的代码应该学会自己照顾自己. 自动转换的机制是: 每一次请求,判断bool值,依据b

  • NumPy实现ndarray多维数组操作

    简介 NumPy一个非常重要的作用就是可以进行多维数组的操作,多维数组对象也叫做ndarray.我们可以在ndarray的基础上进行一系列复杂的数学运算. 本文将会介绍一些基本常见的ndarray操作,大家可以在数据分析中使用. 创建ndarray 创建ndarray有很多种方法,我们可以使用np.random来随机生成数据: import numpy as np # Generate some random data data = np.random.randn(2, 3) data arra

  • numpy取反操作符和Boolean类型与0-1表示方式

    目录 numpy取反操作符和Boolean类型与0-1表示 Python按位取反运算符~解析 总结 numpy取反操作符和Boolean类型与0-1表示 numpy中取反运算符~可以将Boolean类型值取反,这在使用boolean类型数组选择数组中固定元素时十分有用. import numpy as np a=np.array([0,0,1,1]).astype("bool") b=np.arange(4) print("b\n",b) # b # [0 1 2

  • Python numpy有哪些常用数据类型

    目录 常见数据类型介绍 创建数据类型 常见数据类型介绍 Python 原生的数据类型相对较少, bool.int.float.str等.这在不需要关心数据在计算机中表示的所有方式的应用中是方便的.然而,对于科学计算,通常需要更多的控制.为了加以区分 numpy 在这些类型名称末尾都加了“_”. 类型 备注 说明 bool8 = bool_(加下滑线代表为最大) 8位(一个字节八位) 布尔类型 int8 = byte 8位 整型 int16 = short 16位 整型 int32 = intc

  • Python numpy 常用函数总结

    Numpy是什么 在没给大家介绍numpy之前先给大家说下python的基本概念. Python 是一种高级的,动态的,多泛型的编程语言.Python代码很多时候看起来就像是伪代码一样,因此你可以使用很少的几行可读性很高的代码来实现一个非常强大的想法. numpy很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数. 数组 数组常用函数 1.w

  • Python Numpy中数据的常用保存与读取方法

    在经常性读取大量的数值文件时(比如深度学习训练数据),可以考虑现将数据存储为Numpy格式,然后直接使用Numpy去读取,速度相比为转化前快很多. 下面就常用的保存数据到二进制文件和保存数据到文本文件进行介绍: 1.保存为二进制文件(.npy/.npz) numpy.save 保存一个数组到一个二进制的文件中,保存格式是.npy 参数介绍 numpy.save(file, arr, allow_pickle=True, fix_imports=True) file:文件名/文件路径 arr:要存

  • python数据分析Numpy库的常用操作

    numpy库的引入: import numpy as np 1.numpy对象基础属性的查询 lst = [[1, 2, 3], [4, 5, 6]] def numpy_type(): print(type(lst)) data = np.array(lst, dtype=np.float64) # array将数组转为numpy的数组 # bool,int,int8,int16,int32,int64,int128,uint8,uint32, # uint64,uint128,float16

  • Python常用数据类型之列表使用详解

    目录 1.常用数据结构之列表 2.定义和使用列表 2.1列表的运算符 2.2列表元素的遍历 3.列表的方法 3.1添加和删除元素 3.2元素位置和次数 3.3元素排序和反转 4.列表的生成式 5.嵌套的列表 总结 1.常用数据结构之列表 我们先给大家一个编程任务,将一颗色子掷6000次,统计每个点数出现的次数.这个任务对大家来说应该是非常简单的,我们可以用1到6均匀分布的随机数来模拟掷色子,然后用6个变量分别记录每个点数出现的次数,相信大家都能写出下面的代码. import random f1

  • Python NumPy教程之数据类型对象详解

    每个 ndarray 都有一个关联的数据类型 (dtype) 对象.这个数据类型对象(dtype)告诉我们数组的布局.这意味着它为我们提供了以下信息: 数据类型(整数.浮点数.Python 对象等) 数据大小(字节数) 数据的字节顺序(小端或大端) 如果数据类型是子数组,它的形状和数据类型是什么. ndarray 的值存储在缓冲区中,可以将其视为连续的内存字节块.所以这些字节将如何被解释由dtype对象给出. 构造数据类型(dtype)对象 数据类型对象是 numpy.dtype 类的一个实例,

  • 基于Python Numpy的数组array和矩阵matrix详解

    NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵

  • Python numpy中矩阵的基本用法汇总

    Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的matrix与MATLAB中matrices等价. 直接看一个例子: import numpy as np a = np.mat('1 3;5 7')

  • Python Numpy库常见用法入门教程

    本文实例讲述了Python Numpy库常见用法.分享给大家供大家参考,具体如下: 1.简介 Numpy是一个常用的Python科学技术库,通过它可以快速对数组进行操作,包括形状操作.排序.选择.输入输出.离散傅立叶变换.基本线性代数,基本统计运算和随机模拟等.许多Python库和科学计算的软件包都使用Numpy数组作为操作对象,或者将传入的Python数组转化为Numpy数组,因此在Python中操作数据离不开Numpy. Numpy的核心是ndarray对象,由Python的n维数组封装而来

  • python numpy库介绍

    目录 1.NumPy( Numeric Python) 2.numpy的引用 3.Ndarray 引入n维数组的意义 ndarray的组成 ndarray对象的属性 3.数据类型 ndarray数组的创建 adarray数组的变换 ndarray数组运算 4.索引与切片 5.随机数函数 6.统计函数 7.梯度函数 8.副本与视图 numpy线性代数 数组与标量之间的运算 常用numpy.linalg函数总结 1.NumPy( Numeric Python) numpy是一个开源的python科学

随机推荐