详解C/C++高精度算法的简单实现
目录
- 前言
- 一、基本原理
- 二、辅助方法
- 1、字符串转高精度
- 2、整型转高精度
- 3、比较
- 4、打印
- 三、算法实现
- 1、加法
- 2、减法
- 3、乘法
- 4、除法
- 四、使用示例
- 1、加法
- 2、减法
- 3、乘法
- 4、除法
- 总结
前言
由于上一章《C/C++ 高精度(加减乘除)算法实现》是基于工程项目考虑实现的,也做了一定的优化,实现过程较为复杂。不利于移植和使用,且比较难以理解,时间一长代码也容易忘记,所以重新编写了一个简化的版本,方便以后需要时拷贝使用。
一、基本原理
1、存储方式
采用数字记录高精度数字,数组的第一个元素存储数据长度,比如记录数字为1024示例如下:
2、计算方式
采用模拟立竖式计算,比如加法的计算流程,如下图所示1024+9000:
这里只给出加法的计算说明,其他的以此类推,减法与加法基本一致。乘法和除法略有不同,通过示例图表示也复杂,还不如通过代码去理解,本质的方法就是模拟笔算的立竖式计算。
二、辅助方法
1、字符串转高精度
长度记录在数组第一个元素中
/// <summary> /// 通过字符串初始化 /// </summary> /// <param name="a">[in]高精度数组</param> /// <param name="value">[in]字符串首地址</param> static void loadStr(int* a,const char* value) { //记录长度 a[0] = strlen(value); for (int i = 1; i <= a[0]; i++) a[i] = value[a[0] - i] - '0'; }
2、整型转高精度
/// <summary> /// 通过无符号整型初始化 /// </summary> /// <param name="a">[in]高精度数组</param> /// <param name="value">[in]整型值</param> static void loadInt(int* a, uint64_t value) { for (size_t i = 1; i < 8096; i++) { a[i] = value % 10; value /= 10; if (!value) { //记录长度 a[0] = i; return; } } }
3、比较
/// <summary> /// 比较两个高精度数的大小 /// </summary> /// <param name="a">[in]第一个数</param> /// <param name="b">[in]第二个数</param> /// <returns>1是a>b,0是a==b,-1是a<b</returns> static int compare(int* a, int* b) { if (a[0] > b[0])return 1; if (a[0] < b[0])return -1; for (int i = a[0]; i > 0; i--) if (a[i] > b[i])return 1; else if (a[i] < b[i])return -1; return 0; }
4、打印
/// <summary> /// 打印输出结果 /// </summary> static void print(int* a) { if (!a[0]) printf("0"); for (int i = a[0]; i > 0; i--) printf("%d", a[i]); }
三、算法实现
原理就不做具体介绍了,四种计算的核心都是模拟立竖式计算。
1、加法
为了保证代码相对简单,当b长度较小时可能会做一些多余的计算,不影响结果。
/// <summary> /// 加法(累加) ///结果会保存在a中 /// </summary> /// <param name="a">[in]被加数</param> /// <param name="b">[in]加数</param> static void acc(int* a, int* b) { int len = a[0] > b[0] ? a[0] : b[0]; memset(a + a[0] + 1, 0, (len - a[0] + 1) * sizeof(int)); memset(b + b[0] + 1, 0, (len - b[0] + 1) * sizeof(int)); for (int i = 1; i <= len; i++) { int temp = a[i] + b[i]; a[i] = temp % 10; a[i + 1] += temp / 10; } if (a[len + 1])a[0]++; }
2、减法
/// <summary> /// 减法(累减) ///结果会保存在a中 /// </summary> /// <param name="a">[in]被减数,被减数必须大于等于减数</param> /// <param name="b">[in]减数</param> static void subc(int* a, int* b) { memset(b + b[0] + 1, 0, (a[0] - b[0]) * sizeof(int)); for (int i = 1; i <= a[0]; i++) { int temp = a[i] - b[i]; a[i] = temp; if (temp < 0) { //借位 a[i + 1] -= 1; a[i] += 10; } } //记录长度 for (int i = a[0]; i > 0; i--) if (a[i]) { a[0] = i; return; } a[0] = 0; }
3、乘法
/// <summary> /// 乘法 /// </summary> /// <param name="a">[in]被乘数</param> /// <param name="b">[in]乘数</param> /// <param name="c">[out]结果,数组长度必须大于等于aLen+bLen+1</param> static void mul(int* a, int* b, int c[]) { c[a[0] + b[0]] = 0; memset(c, 0, sizeof(int) * (a[0] + b[0] + 1)); for (int i = 1; i <= a[0]; i++) { int j; int d = 0; //被乘数的一位去乘以乘数的每一位 for (j = 1; j <= b[0]; j++) { int temp = a[i] * b[j] + c[j + i - 1] + d; c[j + i - 1] = temp % 10; d = temp / 10; } if (d) { c[j + i - 1] = d; } } //记录长度 for (int i = a[0] + b[0]; i > 0; i--) if (c[i]) { c[0] = i; return; } }
4、除法
采用了升阶+减法实现
/// <summary> /// 除法 /// 依赖减法subc /// </summary> /// <param name="a">[in]被除数,被除数必须大于除数</param> /// <param name="b">[in]除数</param> /// <param name="c">[out]商,数组长度大于等于aLen-bLen+1</param> /// <param name="mod">[out]余数,数组长度大于等于aLen</param>> /// <param name="temp">[in]临时缓冲区,由外部提供以提高性能,数组长度大于等于aLen-bLen+1</param> static void divi(int* a, int* b, int* c, int* mod, int* temp) { //相差的阶数 int digit = a[0] - b[0] + 1; memcpy(mod, a, (a[0] + 1) * sizeof(int)); memset(c, 0, sizeof(int) * (digit + 1)); memset(temp, 0, sizeof(int) * digit); while (digit) { //升阶 memcpy(temp + digit, b + 1, sizeof(int) * b[0]); temp[0] = b[0] + digit - 1; //减法 while (compare(mod, temp) != -1) { subc(mod, temp); c[digit]++; } digit--; } //记录长度 for (int i = a[0] - b[0] + 1; i > 0; i--) if (c[i]) { c[0] = i; return; } }
四、使用示例
1、加法
计算累加
int main() { int64_t n; int num[1024]; int num2[1024]; std::cin >> n; loadInt(num, 0); for (int64_t i = 1; i <= n; i++) { loadInt(num2, i); acc(num, num2); } print(num); return 0; }
结果:
2、减法
两个任意n位数的减法,数字1大于数字2。
int main() { int a1[8096], a2[8096]; std::string s1, s2; std::cin >> s1 >> s2; loadStr(a1, s1.c_str()); loadStr(a2, s2.c_str()); subc(a1, a2); print(a1); return 0; }
结果:
#数字1
752425289999999999999652142141414141414146666676667677682324000001302461646520
#数字2
587891851201874512000000000154515100202121555555555555555555555545477910232111
#计算结果
164533438798125487999652141986899041212025111121112122126768444455824551414409
3、乘法
计算阶乘
int main() { int64_t n; int num[8192]; int num2[8192]; int num3[8192]; int* p1 = num; int* p2 = num3; std::cin >> n; loadInt(num, 1); for (int64_t i = 1; i <= n; i++) { loadInt(num2, i); mul(p1, num2, p2); int* temp = p1; p1 = p2; p2 = temp; } print(p1); return 0; }
结果:
#阶乘数
1000
#计算结果
402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
4、除法
给定两个非负整数A,B,请你计算 A / B的商和余数。
int main() { int a1[8096], a2[8096], c[8096], mod[8096], temp[8096]; std::string s1, s2; std::cin >> s1 >> s2; loadStr(a1, s1.c_str()); loadStr(a2, s2.c_str()); divi(a1, a2, c, mod, temp); print(c); std::cout << std::endl; print(mod); return 0; }
结果:
#被除数
12458848948151231366666666666666665454545123156415641561231561213648
#除数
88484851521548496564154848456486789
#商
140802055198308817458997123299946
#余数
25178368711335236611547594127800254
总结
以上就是今天要讲的内容,本文提供的是较为简化的实现,且每个方法基本是独立的,可单独拿来使用,用法也比较简单,由于采用数组第一个元素存储长度,接口就变得很简洁,使用起来也方便了很多。
到此这篇关于详解C/C++高精度算法的简单实现的文章就介绍到这了,更多相关C/C++高精度算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!