C++ AVL树插入新节点后的四种调整情况梳理介绍

AVL树是一个高度平衡的二叉搜索树

  • 满足二叉搜索树的所有特性。
  • 左子树和右子树的高度之差的绝对值不大于1。

此处AVL树结点的定义

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V> _left;
	AVLTreeNode<K, V> _right;
	AVLTreeNode<K, V> _parent;
	pair<K, V> _kv;
	int _bf; //平衡因子
	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_bf(0)
	{}
};

使用平衡因子,是维持AVL树的方法之一。

此处平衡因子 = 右子树高度 - 左子树高度。

AVL树的定义及默认构造函数

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	AVLTree()
		:_root(nullptr)
	{}
private:
	Node* _root;
};

按照普通二叉搜索树的办法先尝试插入: bool insert(const pair<K, V>& kv);

bool insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		//插入之前是一棵空树,则插入结点变成根结点
		_root = new Node(kv);
		return true;
	}
	//找到一个NULL位置插入
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			//说明已经有了,就不再插入
			return false;
		}
	}
	//已找到,准备插入
	cur = new Node(kv);
	if (parent->_kv.first > kv.first)
	{
		//如果比parent小,链接到parent的左
		parent->_left = cur;
		cur->_parent = parent;
	}
	else
	{
		parent->_right = cur;
		cur->_parent = parent;
	}
}

虽然插入之后,依旧会保持二叉搜索树的特性,但是AVL树的特性可能就被破坏了。当平衡因子的绝对值是2的时候就需要进行调整。以下是AVL树特性被破坏的四种情况及解决办法:

情况一:右单旋。

结点插入后,导致左子树高度比右子树高2,其左孩子的左子树比右子树高1。

口诀:自己左高2,左孩子左高1,左单旋。

情况二:左单旋。

结点插入后,导致右子树的高度比左子树高2,其右孩子的右子树比左子树高1.

口诀:自己右高2,右孩子右高1,右单旋。

情况三:先左单旋、再右边单旋。

结点插入后,导致左子树的高度比右子树的高度高2,其左孩子的右子树比左子树高度高1.

口诀:自己左高2,左孩子右高1,先右旋后左旋。

情况四:先右单旋,再左单旋。

结点插入后右子树比左子树高2,其右孩子的左子树比右子树高1。

口诀:自己右高2,右孩子左高1,先右旋后左旋。

情况三和情况四种,每一种情况又衍生出了两种子问题,关乎平衡因子的更新数值。(假设此时平衡因子是-2的结点为parent, parent的左孩子为subL, subL的右孩子为subLR)

情况三的子问题

a、增加结点放在subLR的左子树。

b、增加结点放在subLR的右子树

调整后

  • parent的平衡因子:1
  • subL的平衡因子:0
  • subLR的平衡因子:0

调整后

  • parent的平衡因子:0
  • subL 的平衡因子:-1
  • subLR的平衡因子:0

可以看出,平衡因子的数值和结点放置位置是强相关的。虽然是同一种大情况,但是放在左子树和放在右子树,上面结点的平衡因子数值不一样。情况四也有两种子情况,和情况三的两种子情况一样。

假设此时平衡因子是2的结点为parent, parent的右孩子为subR, subR的左孩子为subRL

情况四的子问题

a、增加结点放在subRL的左子树。

  • parent的平衡因子:0
  • subR 的平衡因子:0
  • subRL的平衡因子:1

b、增加结点放在sub的右子树。

  • parent的平衡因子:-1
  • subR 的平衡因子:0
  • subRL的平衡因子:0

AVL树简单模拟插入的对应代码

namespace Blog
{
	template<class K, class V>
	struct AVLTreeNode
	{
		AVLTreeNode<K, V> _left;
		AVLTreeNode<K, V> _right;
		AVLTreeNode<K, V> _parent;
		pair<K, V> _kv;
		int _bf; //平衡因子
		AVLTreeNode(const pair<K, V>& kv)
			:_left(nullptr)
			, _right(nullptr)
			, _parent(nullptr)
			, _kv(kv)
			, _bf(0)
		{}
	};
	template<class K, class V>
	class AVLTree
	{
		typedef AVLTreeNode<K, V> Node;
	public:
		AVLTree()
			:_root(nullptr)
		{}
		bool insert(const pair<K, V>& kv)
		{
			if (_root == nullptr)
			{
				//插入之前是一棵空树,则插入结点变成根结点
				_root = new Node(kv);
				return true;
			}
			//找到一个NULL位置插入
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_kv.first > kv.first)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if(cur->_kv.first < kv.first)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					//说明已经有了,就不再插入
					return false;
				}
			}
			//已找到,准备插入
			cur = new Node(kv);
			if (parent->_kv.first > kv.first)
			{
				//如果比parent小,链接到parent的左
				parent->_left = cur;
				cur->_parent = parent;
			}
			else
			{
				parent->_right = cur;
				cur->_parent = parent;
			}
			//更新平衡因子,平衡因子不符合时,调节树
			while (parent)
			{
				//第一步:更新平衡因子
				if (parent->_left == cur)
					parent->_bf--;
				else
					parent->_bf++;
				//检查平衡因子,如果平衡因子不符合,需要调整树
				if (0 == parent->_bf)
				{
					break;
				}
				else if (parent->_bf == 1 || parent->_bf == -1)
				{
					//继续往上更新平衡因子
					cur = parent;
					parent = cur->_parent;
				}
				else if(parent->_bf == 2 || parent->_bf == -2)
				{
					//平衡因子不符合,说明左子树和右子树高度之差为2,需要调整树
					//情况一:右单旋
					if (parent->_bf == -2 && cur->_bf == -1)
					{
						RotateR(parent);
					}
					else if (parent->_bf == 2 && cur->_bf == 1) // 左单旋
					{
						RotateL(parent);
					}
					else if (parent->_bf == -2 && cur->_bf == 1)
					{
						RotateLR(parent);
					}
					else if (parent->_bf == 2 && cur->_bf == -1)
					{
						RotateRL(parent);
					}
					else
					{
						assert(false);
					}
				}
				else
				{
					//说明插入之前,这颗树就已经不符合AVL树的特性了
					assert(false);
				}
			}
			return true;
		}
	private:
		void RotateR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subLR->_right;
			parent->_left = subLR;
			if (subLR)
			{
				subLR->_parent = parent;
			}
			Node* parentParent = parent->_parent;
			subL->_right = parent;
			parent->_parent = subL;
			if (parent == _root)
			{
				subL->_parent = nullptr;
				_root = subL;
			}
			else
			{
				if (parentParent->_left = parent)
				{
					parentParent->_left = subL;
					subL->_parent = parentParent;
				}
				else
				{
					parentParent->_right = subL;
					subL->_parent = parentParent;
				}
			}
			//调节后,重新更新平衡因子
			parent->_bf = subL->_bf = 0;
		}
		void RotateL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = subRL->_left;
			parent->_right = subRL;
			if (subRL)
				suRL->_parent = parent;
			Node* parentParent = parent->_parent;
			subR->_left = parent;
			parent->_parent = subR;
			if (parent == _root)
			{
				subR->_parent = nullptr;
				_root = subR;
			}
			else
			{
				if (parentParent->_left = parent)
				{
					parentParent->_left = subR;
					subR->_parent = parentParent;
				}
				else
				{
					parentParent->_right = subR;
					subR->_parent = parentParent;
				}
			}
			subR->_bf = parent->_bf = 0;
		}
		void RotateLR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subL->_right;
			int bf = subLR->_bf; //用于后面判断加在subRL的左子树还是右子树
			RotateL(parent->_left);
			RotateR(parent);
			//它的两种子情况,更新的平衡因子不一样
			if (bf == -1)
			{
				//加在subLR的左子树
				parent->_bf = 1;
				subL->_bf = 0;
				subLR->_bf = 0;
			}
			else if (bf == 1)
			{
				//加在右子树
				parent->_bf = 0;
				subL->_bf = -1;
				subLR->_bf = 0;
			}
			else if (bf == 0)
			{
				parent->_bf = 0;
				subL->_bf = 0;
				subLR->_bf = 0;
			}
			else
			{
				assert(false);
			}
		}
		void RotateRL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = subL->_left;
			int bf = subRL->_bf; //用于后面判断加在subRL的左子树还是右子树
			RotateL(parent->_right);
			RotateR(parent);
			//它的两种子情况,更新的平衡因子不一样
			if (bf == -1)
			{
				//加在subRL的子树
				parent->_bf = 0;
				subR->_bf = 0;
				subRL->_bf = 1;
			}
			else if (bf == 1)
			{
				//加在左子树
				parent->_bf = -1;
				subR->_bf = 0;
				subRL->_bf = 0;
			}
			else if (bf == 0)
			{
				parent->_bf = 0;
				subR->_bf = 0;
				subRL->_bf = 0;
			}
			else
			{
				assert(false);
			}
		}
	private:
		Node* _root;
	};
}

到此这篇关于C++ AVL树插入新节点后的四种调整情况梳理介绍的文章就介绍到这了,更多相关C++ AVL树内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++实现AVL树的完整代码

    AVL树的介绍 AVL树是一种自平衡的二叉搜索树,它通过单旋转(single rotate)和双旋转(double rotate)的方式实现了根节点的左子树与右子树的高度差不超过1,.这有效的降低了二叉搜索树的时间复杂度,为O(log n).那么,下面小编将详细介绍C++实现AVL树的代码.最后一步提供可靠的代码实现 这里先粘贴代码 给大家的忠告,一定要及时去实现,不然之后再实现要花更多的时间 /* *平衡二叉树应该有些功能 *插入 删除 查找 *前序遍历 中序遍历 后序遍历 层次遍历 *统计结

  • C++数据结构之AVL树的实现

    目录 1.概念 (1)二叉搜索树的缺点 (2)定义节点 2.插入 (1)拆分 (2)找节点与插节点 (3)更新平衡因子与旋转 3.判断 4.完整代码及测试代码 完整代码 测试代码 1.概念 (1)二叉搜索树的缺点 要手撕AVL树,我们首先要知道什么是AVL树.AVL树是在二叉搜索树的基础之上改造的.当我们插入的是一个有序的序列的时候,二叉搜素树会使用一条直线来进行存储,这样并不利于查找. 当遇到这种情况的时候我们就需要对这棵树来进行调整.AVL树会通过旋转等操作,来规避这种情况.最终满足每一个节

  • C++实现AVL树的基本操作指南

    目录 AVL树的概念 AVL树的插入 AVL树的四种旋转 右单旋 左单旋 左右双旋 右左双旋 查找 其他接口 析构函数 拷贝构造 拷贝赋值 总结 AVL树的概念 二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下.因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需

  • Springboot整合Netty实现RPC服务器详解流程

    目录 一.什么是RPC? 二.实现RPC需要解决那些问题? 1. 约定通信协议格式 RPC请求 RPC响应 2. 序列化方式 3. TCP粘包.拆包 4. 网络通信框架的选择 三.RPC服务端 四.RPC客户端 总结 一.什么是RPC? RPC(Remote Procedure Call)远程过程调用,是一种进程间的通信方式,其可以做到像调用本地方法那样调用位于远程的计算机的服务.其实现的原理过程如下: 本地的进程通过接口进行本地方法调用. RPC客户端将调用的接口名.接口方法.方法参数等信息利

  • C++ AVL树插入新节点后的四种调整情况梳理介绍

    AVL树是一个高度平衡的二叉搜索树 满足二叉搜索树的所有特性. 左子树和右子树的高度之差的绝对值不大于1. 此处AVL树结点的定义 template<class K, class V> struct AVLTreeNode { AVLTreeNode<K, V> _left; AVLTreeNode<K, V> _right; AVLTreeNode<K, V> _parent; pair<K, V> _kv; int _bf; //平衡因子 A

  • 图解AVL树数据结构输入与输出及实现示例

    目录 AVL树(平衡二叉树): AVL树的作用: AVL树的基本操作: AVL树的插入,单旋转的第一种情况---右旋: AVL树的插入,单旋转的第二种情况---左旋: AVL树的插入,双旋转的第一种情况---左右(先左后右)旋: AVL树的插入,双旋转的第二种情况---右左(先右后左)旋: AVL树的插入代码实现:(仅供参考) AVL树(平衡二叉树): AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树

  • Java详解AVL树的应用

    目录 一.什么是AVL树 1.二叉搜索树 2.为什么引入了AVL树 3.什么是AVL树 二.自己构造AVL树 三.AVL树的插入和删除 1.插入 1.1.右单旋 1.2.左单旋 1.3.左右双旋 1.4.右左双旋 2.删除 一.什么是AVL树 在认识AVL树之前我们先认识一下什么是二叉搜索树: 1.二叉搜索树 二叉搜索树又称为二叉排序树,二叉搜索树满足所有的左孩子节点都小于其根节点的值,所有的右孩子节点都大于其根节点的值,二叉搜索树上的每一棵子树都是一棵二叉搜索树,因此二叉搜索树通过中序遍历可以

  • JS简单添加元素新节点的方法示例

    本文实例讲述了JS简单添加元素新节点的方法.分享给大家供大家参考,具体如下: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>www.jb51.net - JS添加新节点的几种方法</title> </head> <body> <div id="d">

  • 详解C#批量插入数据到Sqlserver中的四种方式

    本篇,我将来讲解一下在Sqlserver中批量插入数据. 先创建一个用来测试的数据库和表,为了让插入数据更快,表中主键采用的是GUID,表中没有创建任何索引.GUID必然是比自增长要快的,因为你生成一个GUID算法所花的时间肯定比你从数据表中重新查询上一条记录的ID的值然后再进行加1运算要少.而如果存在索引的情况下,每次插入记录都会进行索引重建,这是非常耗性能的.如果表中无可避免的存在索引,我们可以通过先删除索引,然后批量插入,最后再重建索引的方式来提高效率. create database C

  • Jquery对新插入的节点 绑定Click事件失效的解决方法

    1.有人说用 Live, 事实上现在最新的Jquery已经不支持 Live 了.live的解决方法如下: 你可以看这个 也可以不看 ,只是做到心中有数就可以了.下面介绍ON的方法. live:Live的使用介绍 2.有人用了ON 来解决, 这个解决方法基本在理. On :On的介绍,能解决问题 On的方法,基本能解决问题,但是你也要根据你的具体情况做选择.并不是每个人的代码都像上面这个案例描述的那么简单.但是万变不离其宗. 我是这样来做的,最终把问题解决了. 我有一个UL 标签是静态的,就是说不

  • 数据结构之AVL树详解

    1. 概述 AVL树是最早提出的自平衡二叉树,在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.AVL树得名于它的发明者G.M. Adelson-Velsky和E.M. Landis.AVL树种查找.插入和删除在平均和最坏情况下都是O(log n),增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.本文介绍了AVL树的设计思想和基本操作. 2. 基本术语 有四种种情况可能导致二叉查找树不平衡,分别为: (1)LL:插入一个新节点到根节点的左子树(Left)的左子树

  • C语言数据结构之平衡二叉树(AVL树)实现方法示例

    本文实例讲述了C语言数据结构之平衡二叉树(AVL树)实现方法.分享给大家供大家参考,具体如下: AVL树是每个结点的左子树和右子树的高度最多差1的二叉查找树. 要维持这个树,必须在插入和删除的时候都检测是否出现破坏树结构的情况.然后立刻进行调整. 看了好久,网上各种各种的AVL树,千奇百怪. 关键是要理解插入的时候旋转的概念. // // AvlTree.h // HelloWorld // Created by feiyin001 on 17/1/9. // Copyright (c) 201

  • C++AVL树4种旋转详讲(左单旋、右单旋、左右双旋、右左双旋)

    目录 引子:AVL树是因为什么出现的? 1.AVl树的的特性 2.AVl树的框架 3.AVL树的插入 3.1四种旋转(左单旋.右单旋.左右双旋.右左双旋) 3.1.1左单旋 3.1.2右单旋 3.1.3左右双旋 3.1.4右左双旋 附:AVL的性能 总结 引子:AVL树是因为什么出现的? 二叉搜索树可以缩短查找的效率,如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下时间复杂度:O(N) 两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.L

随机推荐