Python NumPy教程之数组的基本操作详解

目录
  • Numpy中的N维数组(ndarray)
  • 数组创建
  • 数组索引
  • 基本操作
  • 数据类型

Numpy中的N维数组(ndarray)

Numpy 中的数组是一个元素表(通常是数字),所有元素类型相同,由正整数元组索引。在 Numpy 中,数组的维数称为数组的秩。给出数组沿每个维的大小的整数元组称为数组的形状。Numpy 中的数组类称为ndarray。Numpy 数组中的元素可以使用方括号访问,并且可以使用嵌套的 Python 列表进行初始化。

例子 :

[[ 1, 2, 3],
      [ 4, 2, 5]]

Here, rank = 2 (as it is 2-dimensional or it has 2 axes)
First dimension(axis) length = 2, second dimension has length = 3
overall shape can be expressed as: (2, 3)
# 演示基本数组特征的 Python 程序
import numpy as np

# 创建数组对象
arr = np.array( [[ 1, 2, 3],
                 [ 4, 2, 5]] )

# arr 对象的打印类型
print("Array is of type: ", type(arr))

# 打印数组维度(轴)
print("No. of dimensions: ", arr.ndim)

# 阵列的打印形状
print("Shape of array: ", arr.shape)

# 数组的打印大小(元素总数)
print("Size of array: ", arr.size)

# 打印数组中元素的类型
print("Array stores elements of type: ", arr.dtype)

输出 :

Array is of type:  <class 'numpy.ndarray'>
No. of dimensions:  2
Shape of array:  (2, 3)
Size of array:  6
Array stores elements of type:  int64

数组创建

在 NumPy 中有多种创建数组的方法。

  • 例如,您可以使用array函数从常规 Python列表元组创建一个数组。 结果数组的类型是从序列中元素的类型推导出来的。****
  • 通常,数组的元素最初是未知的,但它的大小是已知的。因此,NumPy 提供了几个函数来创建具有初始占位符内容的数组。这些最大限度地减少了增长阵列的必要性,这是一项昂贵的操作。
    例如:  np.zeros、np.ones、np.full、np.empty 等。
  • 为了创建数字序列,NumPy 提供了一个类似于 range 的函数,它返回数组而不是列表。
  • arange: 返回给定间隔内均匀分布的值。长是指定的。
  • linspace: 返回给定间隔内均匀分布的值。编号_ 的元素被返回。
  • 重塑数组: 我们可以使用reshape方法来重塑数组。考虑一个形状为 (a1, a2, a3, ..., aN) 的数组。我们可以重新整形并将其转换为另一个形状为 (b1, b2, b3, ..., bM) 的数组。唯一需要的条件是:
    a1 x a2 x a3 … x aN = b1 x b2 x b3 … x bM 。(即数组的原始大小保持不变。)
  • 扁平化数组: 我们可以使用扁平化方法将数组的副本折叠成一维。它接受order参数。默认值为“C”(用于行优先顺序)。使用“F”表示列主要顺序。

注意: 数组的类型可以在创建数组时显式定义。

# 演示数组创建技术的 Python 程序
import numpy as np

# 从浮点类型的列表创建数组
a = np.array([[1, 2, 4], [5, 8, 7]], dtype = 'float')
print ("Array created using passed list:\n", a)

# 从元组创建数组
b = np.array((1 , 3, 2))
print ("\nArray created using passed tuple:\n", b)

# 创建一个全为零的 3X4 数组
c = np.zeros((3, 4))
print ("\nAn array initialized with all zeros:\n", c)

# 创建一个复杂类型的常量值数组
d = np.full((3, 3), 6, dtype = 'complex')
print ("\nAn array initialized with all 6s."
            "Array type is complex:\n", d)

输出 :

Array created using passed list:
 [[ 1.  2.  4.]
 [ 5.  8.  7.]]

Array created using passed tuple:
 [1 3 2]

An array initialized with all zeros:
 [[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]

An array initialized with all 6s. Array type is complex:
 [[ 6.+0.j  6.+0.j  6.+0.j]
 [ 6.+0.j  6.+0.j  6.+0.j]
 [ 6.+0.j  6.+0.j  6.+0.j]]

数组索引

了解数组索引的基础知识对于分析和操作数组对象很重要。NumPy 提供了许多方法来进行数组索引。

  • 切片: 就像 python 中的列表一样,NumPy 数组可以切片。由于数组可以是多维的,因此您需要为数组的每个维度指定一个切片。
  • 整数数组索引: 在此方法中,传递列表以对每个维度进行索引。完成对应元素的一对一映射以构造一个新的任意数组。
  • 布尔数组索引: 当我们想从数组中选择满足某些条件的元素时使用此方法。
# 在 numpy 中演示索引的 Python 程序
import numpy as np

# 一个示例数组
arr = np.array([[-1, 2, 0, 4],
                [4, -0.5, 6, 0],
                [2.6, 0, 7, 8],
                [3, -7, 4, 2.0]])

# 切片数组
temp = arr[:2, ::2]
print ("Array with first 2 rows and alternate"
                    "columns(0 and 2):\n", temp)

# 整数数组索引示例
temp = arr[[0, 1, 2, 3], [3, 2, 1, 0]]
print ("\nElements at indices (0, 3), (1, 2), (2, 1),"
                                    "(3, 0):\n", temp)

# 布尔数组索引示例
cond = arr > 0 # cond is a boolean array
temp = arr[cond]
print ("\nElements greater than 0:\n", temp)

输出 :

Array with first 2 rows and alternatecolumns(0 and 2):
 [[-1.  0.]
 [ 4.  6.]]

Elements at indices (0, 3), (1, 2), (2, 1),(3, 0):
 [ 4.  6.  0.  3.]

Elements greater than 0:
 [ 2.   4.   4.   6.   2.6  7.   8.   3.   4.   2. ]

基本操作

NumPy 提供了大量的内置算术函数。

对单个数组的操作: 我们可以使用重载的算术运算符对数组进行元素操作以创建一个新数组。在 +=、-=、*= 运算符的情况下,将修改现有数组。

# 演示单个数组的基本操作的 Python 程序
import numpy as np

a = np.array([1, 2, 5, 3])

# 每个元素加 1
print ("Adding 1 to every element:", a+1)

# 从每个元素中减去 3
print ("Subtracting 3 from each element:", a-3)

# 将每个元素乘以 10
print ("Multiplying each element by 10:", a*10)

# 平方每个元素
print ("Squaring each element:", a**2)

# 修改现有数组
a *= 2
print ("Doubled each element of original array:", a)

# 数组转置
a = np.array([[1, 2, 3], [3, 4, 5], [9, 6, 0]])

print ("\nOriginal array:\n", a)
print ("Transpose of array:\n", a.T)

输出 :

Adding 1 to every element: [2 3 6 4]
Subtracting 3 from each element: [-2 -1  2  0]
Multiplying each element by 10: [10 20 50 30]
Squaring each element: [ 1  4 25  9]
Doubled each element of original array: [ 2  4 10  6]

Original array:
 [[1 2 3]
 [3 4 5]
 [9 6 0]]
Transpose of array:
 [[1 3 9]
 [2 4 6]
 [3 5 0]]

一元运算符:许多一元运算作为 ndarray类的方法提供。这包括 sum、min、max 等。这些函数也可以通过设置轴参数来逐行或逐列应用。

# 在 numpy 中演示一元运算符的 Python 程序
import numpy as np

arr = np.array([[1, 5, 6],
                [4, 7, 2],
                [3, 1, 9]])

# 数组的最大元素
print ("Largest element is:", arr.max())
print ("Row-wise maximum elements:",
                    arr.max(axis = 1))

# 数组的最小元素
print ("Column-wise minimum elements:",
                        arr.min(axis = 0))

# 数组元素之和
print ("Sum of all array elements:",
                            arr.sum())

# 每行的累积总和
print ("Cumulative sum along each row:\n",
                        arr.cumsum(axis = 1))

输出 :

Largest element is: 9
Row-wise maximum elements: [6 7 9]
Column-wise minimum elements: [1 1 2]
Sum of all array elements: 38
Cumulative sum along each row:
[[ 1  6 12]
 [ 4 11 13]
 [ 3  4 13]]

二元运算符: 这些操作适用于数组元素并创建一个新数组。您可以使用所有基本的算术运算符,如 +、-、/、等。如果是 +=、-=、  = 运算符,则会修改现有数组。

# 在 Numpy 中演示二元运算符的 Python 程序
import numpy as np

a = np.array([[1, 2],
            [3, 4]])
b = np.array([[4, 3],
            [2, 1]])

# 添加数组
print ("Array sum:\n", a + b)

# 乘法数组(元素乘法)
print ("Array multiplication:\n", a*b)

# 矩阵乘法
print ("Matrix multiplication:\n", a.dot(b))

输出:

Array sum:
[[5 5]
 [5 5]]
Array multiplication:
[[4 6]
 [6 4]]
Matrix multiplication:
[[ 8  5]
 [20 13]]

通用函数 (ufunc):  NumPy 提供熟悉的数学函数,例如 sin、cos、exp 等。这些函数还对数组进行元素操作,生成数组作为输出。

注意: 我们上面使用重载运算符所做的所有操作都可以使用 ufunc 完成,例如 np.add、np.subtract、np.multiply、np.divide、np.sum 等。

# 在 numpy 中演示通用函数的 Python 程序
import numpy as np

# 创建一个正弦值数组
a = np.array([0, np.pi/2, np.pi])
print ("Sine values of array elements:", np.sin(a))

# exponential values
a = np.array([0, 1, 2, 3])
print ("Exponent of array elements:", np.exp(a))

# square root of array values
print ("Square root of array elements:", np.sqrt(a))

输出:

Sine values of array elements: [  0.00000000e+00   1.00000000e+00   1.22464680e-16]
Exponent of array elements: [  1.           2.71828183   7.3890561   20.08553692]
Square root of array elements: [ 0.          1.          1.41421356  1.73205081]

数据类型

每个 ndarray 都有一个关联的数据类型 (dtype) 对象。这个数据类型对象(dtype)告诉我们数组的布局。这意味着它为我们提供了以下信息:

  • 数据类型(整数、浮点数、Python 对象等)
  • 数据大小(字节数)
  • 数据的字节顺序(小端或大端)
  • 如果数据类型是子数组,它的形状和数据类型是什么。

ndarray的值存储在缓冲区中,可以将其视为连续的内存字节块。所以这些字节将如何被解释由 dtype 对象给出。

每个 Numpy 数组都是一个元素表(通常是数字),所有元素类型相同,由正整数元组索引。每个 ndarray 都有一个关联的数据类型 (dtype) 对象。

此数据类型对象 (dtype) 提供有关数组布局的信息。ndarray 的值存储在缓冲区中,可以将其视为可以由 dtype 对象解释的连续内存字节块。Numpy 提供了大量可用于构造数组的数值数据类型。

在创建数组时,Numpy 会尝试猜测数据类型,但构造数组的函数通常还包含一个可选参数来显式指定数据类型。

# Python Program to create a data type object
import numpy as np

# np.int16 is converted into a data type object.
print(np.dtype(np.int16))

输出:

int16

# Python Program to create a data type object
# containing a 32 bit big-endian integer
import numpy as np

# i4 represents integer of size 4 byte
# > represents big-endian byte ordering and
# < represents little-endian encoding.
# dt is a dtype object
dt = np.dtype('>i4')

print("Byte order is:",dt.byteorder)

print("Size is:",dt.itemsize)

print("Data type is:",dt.name)

输出:

Byte order is: >
Size is: 4
Name of data type is: int32

到此这篇关于Python NumPy教程之数组的基本操作详解的文章就介绍到这了,更多相关Python NumPy数组内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python如何实现大型数组运算(使用NumPy)

    问题 你需要在大数据集(比如数组或网格)上面执行计算. 解决方案 涉及到数组的重量级运算操作,可以使用NumPy库.NumPy的一个主要特征是它会给Python提供一个数组对象,相比标准的Python列表而已更适合用来做数学运算.下面是一个简单的小例子,向你展示标准列表对象和NumPy数组对象之间的差别: >>> # Python lists >>> x = [1, 2, 3, 4] >>> y = [5, 6, 7, 8] >>>

  • Python numpy多维数组实现原理详解

    NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.今天就针对多维数组展开来写博客numpy其一部分功能如下: 1.ndarray,是具有矢量算术运算且节省空间的多维数组. 2.可以用于对整组的数据快速进行运算的辨准数学函数. 3.能够用于读写磁盘数据的工具以及用于操作系统内存映射的工具. NumPy它本身其实没有提供很高级别的数据分析功能,NumPy之于数值计算特别重要的原因之一,就是因为

  • Python Numpy中数组的集合操作详解

    我们知道两个 set 对象之间,可以取交集.并集.差集.对称差集,举个例子: s1 = {1, 2, 3} s2 = {2, 3, 4} """ &: 交集 |: 并集  -: 差集 ^: 对称差集 """ # 以下几种方式是等价的 # 但是一般我们都会使用操作符来进行处理,因为比较方便 print(s1 & s1) print(s1.intersection(s2)) print(set.intersection(s1, s2)

  • Python中的numpy数组模块

    目录 一.numpy简介 1.numpy库作用: 2.NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含: 3.NumPy 应用 二.为什么用numpy 三.创建numpy数组 1.将列表转换创建numpy数组,可选择显式指定dtype 2.arange方式创建numpy数组 3.其他方式创建numpy数组 4.numpy或pandas中reshape()重塑形状(行列转换)的用法 4.numpy.random生成随机数 5. fromstring/fromfunction(了解)

  • Python中numpy数组的计算与转置详解

    目录 前言 1.numpy数组与数的运算 2.numpy相同尺寸的数组运算 3.numpy不同尺寸的数组计算 4.numpy数组的转置 总结: 前言 本文主要讲述numpy数组的计算与转置,讲相同尺寸数组的运算与不同尺寸数组的运算,同时介绍数组转置的三种方法. numpy数组的操作比较枯燥,但是都很实用,在很多机器学习.深度学习算法中都会使用到,对numpy数组的一些操作. 1.numpy数组与数的运算 主要包括数组与数的加减乘除运算,废话不多说,看代码: import numpy as np

  • python numpy库中数组遍历的方法

    1.对于一维数组,可以有: 2. 对于二维数组:考虑可将其看作为矩阵,故可以如下书写二重遍历 这里外层循环的是二维数组A的行,内层则是列 同时c的作用:不想用肉眼直接观察得到行列数,故用A.shape方法获得(2,6)的元组,然后改变数据类型为列表,然后直接使用. 3.对于三维数组,如: 有两个二维数组,二维数组中又有三个长度为4的数组.可以这样子循环: 又len(f) = 2, len(f[0]) = 3, len(f[0][0]) = 4;故可以再一次改进代码,这里就不写了. f[0]:三维

  • Python NumPy教程之数组的基本操作详解

    目录 Numpy中的N维数组(ndarray) 数组创建 数组索引 基本操作 数据类型 Numpy中的N维数组(ndarray) Numpy 中的数组是一个元素表(通常是数字),所有元素类型相同,由正整数元组索引.在 Numpy 中,数组的维数称为数组的秩.给出数组沿每个维的大小的整数元组称为数组的形状.Numpy 中的数组类称为ndarray.Numpy 数组中的元素可以使用方括号访问,并且可以使用嵌套的 Python 列表进行初始化. 例子 : [[ 1, 2, 3], [ 4, 2, 5]

  • Python NumPy教程之数组的创建详解

    目录 使用 List 创建数组 使用数组函数创建数组 使用 numpy 方法创建数组 重塑数组 展平数组 在 Numpy 中创建数组的方法 使用 List 创建数组 数组用于在一个变量中存储多个值.Python 没有对数组的内置支持,但可以使用 Python 列表代替. 例子 : arr = [1, 2, 3, 4, 5] arr1 = ["geeks", "for", "geeks"] # 用于创建数组的 Python 程序 # 使用列表创建数

  • Python+NumPy绘制常见曲线的方法详解

    目录 一.利萨茹曲线 二.计算斐波那契数列 三.方波 四.锯齿波和三角波 在NumPy中,所有的标准三角函数如sin.cos.tan等均有对应的通用函数. 一.利萨茹曲线 (Lissajous curve)利萨茹曲线是一种很有趣的使用三角函数的方式(示波器上显示出利萨茹曲线).利萨茹曲线由以下参数方程定义: x = A sin(at + n/2) y = B sin(bt) 利萨茹曲线的参数包括 A . B . a 和 b .为简单起见,我们令 A 和 B 均为1,设置的参数为 a=9 , b=

  • Python Numpy库datetime类型的处理详解

    前言 关于时间的处理,Python中自带的处理时间的模块就有time .datetime.calendar,另外还有扩展的第三方库,如dateutil等等.通过这些途径可以随心所欲地用Python去处理时间.当我们用NumPy库做数据分析时,如何转换时间呢? 在NumPy 1.7版本开始,它的核心数组(ndarray)对象支持datetime相关功能,由于'datetime'这个数据类型名称已经在Python自带的datetime模块中使用了, NumPy中时间数据的类型称为'datetime6

  • Python元组 tuple的概念与基本操作详解【定义、创建、访问、计数、推导式等】

    本文实例讲述了Python元组 tuple的概念与基本操作.分享给大家供大家参考,具体如下: 元组 tuple 元组 tuple的定义 元组的创建 元组的元素访问和计数 1. 元组的元素不能修改 2. 元组的元素访问和列表一样,只不过返回的仍然是元组对象. 3. 列表关于排序的方法 list.sorted()是修改原列表对象,元组没有该方法.如果要对元组排 zip 生成器推导式创建元组 元组总结 元组 tuple的定义 列表属于可变序列,可以任意修改列表中的元素.元组属于不可变序列,不能修改元组

  • Python当中的array数组对象实例详解

    计算机为数组分配一段连续的内存,从而支持对数组随机访问: 由于项的地址在编号上是连续的,数组某一项的地址可以通过将两个值相加得出,即将数组的基本地址和项的偏移地址相加. 数组的基本地址就是数组的第一项的机器地址.一个项的偏移地址就等于它的索引乘以数组的一个项所需要的内存单元数目的一个常量表示(在python中,这个值总是1) import array #array模块是python中实现的一种高效的数组存储类型.它和list相似,但是所有的数组成员必须是同一种类型,在创建数组的时候,就确定了数组

  • python基础教程之元组操作使用详解

    简介 tuple 1.元组是以圆括号"()"包围的数据集合,不同成员以","分隔.通过下标进行访问 2.不可变序列,可以看做不可变的列表,与列表不同:元组中数据一旦确立就不能改变(所以没有类似列表的增删改操作,只有基本序列操作) 3.支持任意类型,任意嵌套以及常见的序列操作 4.元组通常用在使语句或用户定义的函数能够安全地采用一组值的时候,即被使用的元组的值不会改变 声明及使用 复制代码 代码如下: t = ()  #空元组t =(1,)  #单个元素元组,注意逗号

  • python基础教程之数字处理(math)模块详解

    1.math简介 复制代码 代码如下: >>> import math>>>dir(math)          #这句可查看所有函数名列表>>>help(math)         #查看具体定义及函数0原型 2.常用函数 复制代码 代码如下: ceil(x) 取顶floor(x) 取底fabs(x) 取绝对值factorial (x) 阶乘hypot(x,y)  sqrt(x*x+y*y)pow(x,y) x的y次方sqrt(x) 开平方log(x

  • Python NumPy教程之遍历数组详解

    NumPy 包包含一个迭代器对象numpy.nditer.它是一个高效的多维迭代器对象,使用它可以迭代数组.使用 Python 的标准迭代器接口访问数组的每个元素. # 用于遍历数组的 Python 程序 import numpy as geek # 使用排列方法创建数组 a = geek.arange(12) # 具有 3 行和 4 列的形状数组 a = a.reshape(3,4) print('Original array is:') print(a) print() print('Mod

随机推荐