python迭代器实例简析

本文实例讲述了python迭代器的简单用法,分享给大家供大家参考。具体分析如下:

生成器表达式是用来生成函数调用时序列参数的一种迭代器写法

生成器对象可以遍历或转化为列表(或元组等数据结构),但不能切片(slicing)。当函数的唯一的实参是可迭代序列时,便可以去掉生成器表达式两端>的圆括号,写出更优雅的代码:

>>>> sum(i for i in xrange(10))
 45

sum声明:

sum(iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The iterable‘s items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate a sequence of strings is by calling ''.join(sequence). Note that sum(range(n), m) is equivalent to reduce(operator.add, range(n), m) To add floating point values with extended precision, see math.fsum().

参数要求传入可迭代序列,我们传入一个生成器对象,完美实现。

注意区分下面代码:

上面的j为生成器类型,下面的j为list类型:

j = (i for i in range(10))
print j,type(j)
print '*'*70 

j = [i for i in range(10)]
print j,type(j)

结果:

<generator object <genexpr> at 0x01CB1A30> <type 'generator'>
**********************************************************************
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] <type 'list'>

希望本文所述对大家Python程序设计的学习有所帮助。

(0)

相关推荐

  • python的迭代器与生成器实例详解

    本文以实例详解了python的迭代器与生成器,具体如下所示: 1. 迭代器概述:   迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.   1.1 使用迭代器的优点   对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值).但对于无法随机访问的数据结构(比

  • python中实现迭代器(iterator)的方法示例

    概述 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退. 延迟计算或惰性求值 (Lazy evaluation) 迭代器不要求你事先准备好整个迭代过程中所有的元素.仅仅是在迭代至某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁.这个特点使得它特别适合用于遍历一些巨大的或是无限的集合. 今天创建了一个实体类,大致如下: class Account(): def __init__(self, account_n

  • python迭代器与生成器详解

    例子 老规矩,先上一个代码: def add(s, x): return s + x def gen(): for i in range(4): yield i base = gen() for n in [1, 10]: base = (add(i, n) for i in base) print list(base) 这个东西输出可以脑补一下, 结果是[20,21,22,23], 而不是[10, 11, 12, 13]. 当时纠结了半天,一直没搞懂,后来齐老师稍微指点了一下, 突然想明白了-

  • python中迭代器(iterator)用法实例分析

    本文实例讲述了python中迭代器(iterator)用法.分享给大家供大家参考.具体如下: #--------------------------------------- # Name: iterators.py # Author: Kevin Harris # Last Modified: 03/11/04 # Description: This Python script demonstrates how to use iterators. #----------------------

  • Python中的迭代器漫谈

    问题是在Python中进行循环的时候产生的,熟悉Python的都知道,它没有类似其它语言中的for循环, 只能通过for in的方式进行循环遍历.最典型的应用就是通过range函数产生一个列表,然后用for in进行操作,如下: 复制代码 代码如下: #!/usr/bin/env python for i in range(10):     print i 代码的意义很好理解,range会产生一个列表,用for in最这个列表进行遍历,就有和类似for(i = 0;i<n;i++)同样的效果,r

  • python迭代器的使用方法实例

    什么是迭代器? 迭代器是带有next方法的简单对象,当然也要实现__iter__函数.迭代器能在一序列的值上进行迭代,当没有可供迭代时,next方法就会引发StopIteration 的异常.python中有很多的对象都是迭代器,例如:列表,元素,字符串,文件,映射,集合 如何使用迭代器? 1. for 变量 in 可迭代对象 复制代码 代码如下: list1 = [1,2,3,4,5] for ele in list1:    print ele, 结果为:1 2 3 4 5 2. if 变量

  • Python中Iterator迭代器的使用杂谈

    迭代器是一种支持next()操作的对象.它包含一组元素,当执行next()操作时,返回其中一个元素:当所有元素都被返回后,生成一个StopIteration异常. >>>a=[1,2,3] >>>ia=iter(a) >>>next(ia) 1 >>>next(ia) 2 >>>next(ia) 3 >>>next(ia) Traceback (most recent call last): Fil

  • 深入讲解Python中的迭代器和生成器

    在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的,就要了解一下迭代器相关的知识了. 迭代器 迭代器对象要求支持迭代器协议的对象,在Python中,支持迭代器协议就是实现对象的__iter__()和next()方法.其中__iter__()方法返回迭代器对象本身:next()方法返回容器的下一个元素,在结尾时引发StopIteration异常. __iter__()和next()

  • Python迭代器和生成器介绍

    迭代器 迭代器是一个实现了迭代器协议的对象,Python中的迭代器协议就是有next方法的对象会前进到下一结果,而在一系列结果的末尾是,则会引发StopIteration. 在for循环中,Python将自动调用工厂函数iter()获得迭代器,自动调用next()获取元素,还完成了检查StopIteration异常的工作. 常用的几个内建数据结构tuple.list.set.dict都支持迭代器,字符串也可以使用迭代操作. 你也可以自己实现一个迭代器,如上所述,只需要在类的__iter__方法中

  • 详解Python迭代和迭代器

    我们将要来学习python的重要概念迭代和迭代器,通过简单实用的例子如列表迭代器和xrange. 可迭代 一个对象,物理或者虚拟存储的序列.list,tuple,strins,dicttionary,set以及生成器对象都是可迭代的,整型数是不可迭代的.如果你不确定哪个可迭代哪个不可以,你需要用python内建的iter()来帮忙. >>> iter([1,2,3]) <listiterator object at 0x026C8970> >>> iter(

随机推荐