python中OrderedDict的使用方法详解

很多人认为python中的字典是无序的,因为它是按照hash来存储的,但是python中有个模块collections(英文,收集、集合),里面自带了一个子类

OrderedDict,实现了对字典对象中元素的排序。请看下面的实例:

import collections
print "Regular dictionary"
d={}
d['a']='A'
d['b']='B'
d['c']='C'
for k,v in d.items():
  print k,v

print "\nOrder dictionary"
d1 = collections.OrderedDict()
d1['a'] = 'A'
d1['b'] = 'B'
d1['c'] = 'C'
d1['1'] = '1'
d1['2'] = '2'
for k,v in d1.items():
  print k,v

输出:

Regular dictionary
a A
c C
b B

Order dictionary
a A
b B
c C
1 1
2 2

可以看到,同样是保存了ABC等几个元素,但是使用OrderedDict会根据放入元素的先后顺序进行排序。所以输出的值是排好序的。

OrderedDict对象的字典对象,如果其顺序不同那么Python也会把他们当做是两个不同的对象,请看事例:

print 'Regular dictionary:'
d2={}
d2['a']='A'
d2['b']='B'
d2['c']='C'

d3={}
d3['c']='C'
d3['a']='A'
d3['b']='B'

print d2 == d3

print '\nOrderedDict:'
d4=collections.OrderedDict()
d4['a']='A'
d4['b']='B'
d4['c']='C'

d5=collections.OrderedDict()
d5['c']='C'
d5['a']='A'
d5['b']='B'

print d1==d2

输出:

Regular dictionary:
True

OrderedDict:
False

再看几个例子:

 dd = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2}
#按key排序
kd = collections.OrderedDict(sorted(dd.items(), key=lambda t: t[0]))
print kd
#按照value排序
vd = collections.OrderedDict(sorted(dd.items(),key=lambda t:t[1]))
print vd

#输出
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python模块简介之有序字典(OrderedDict)

    有序字典-OrderedDict简介 示例 有序字典和通常字典类似,只是它可以记录元素插入其中的顺序,而一般字典是会以任意的顺序迭代的.参见下面的例子: import collections print 'Regular dictionary:' d = {} d['a'] = 'A' d['b'] = 'B' d['c'] = 'C' d['d'] = 'D' d['e'] = 'E' for k, v in d.items(): print k, v print '\nOrderedDict

  • Python的collections模块中的OrderedDict有序字典

    如同这个数据结构的名称所说的那样,它记录了每个键值对添加的顺序. d = OrderedDict() d['a'] = 1 d['b'] = 10 d['c'] = 8 for letter in d: print letter 输出: a b c 如果初始化的时候同时传入多个参数,它们的顺序是随机的,不会按照位置顺序存储. >>> d = OrderedDict(a=1, b=2, c=3) OrderedDict([('a', 1), ('c', 3), ('b', 2)]) 除了和

  • python中OrderedDict的使用方法详解

    很多人认为python中的字典是无序的,因为它是按照hash来存储的,但是python中有个模块collections(英文,收集.集合),里面自带了一个子类 OrderedDict,实现了对字典对象中元素的排序.请看下面的实例: import collections print "Regular dictionary" d={} d['a']='A' d['b']='B' d['c']='C' for k,v in d.items(): print k,v print "\

  • Python中unittest的断言方法详解

    目录 断言方法: 方法有: 下面是做的例子,后边是运行结果: 总结 断言方法: 是unittest提供的一组方法,可以通过这些方法完成期望结果和实际结果的对比 方法有: assert+空格+要判断的语句+逗号+'报错语句'        python提供 assertEqual(a,b,msg='报错语句')        若a==b不报错,否则报错内容为msg assertNotEqual(a,b,msg='报错语句')        若a!=b不报错,否则报错内容为msg assertIn(

  • python中torch.nn.identity()方法详解

    目录 先看代码 看源码 应用 总结 先看代码 m = nn.Identity( 54, unused_argument1=0.1, unused_argument2=False ) input = torch.randn(128, 20) output = m(input) >>> print(output.size()) torch.Size([128, 20]) 这是官方文档中给出的代码,很明显,没有什么变化,输入的是torch,输出也是,并且给定的参数似乎并没有起到变化的效果. 看

  • python中使用正则表达式的方法详解

    目录 search(pattern, string, flags=0) findall(pattern, string, flags=0) sub(pattern, repl, string, count=0, flags=0) compile(pattern, flags=0) flags的一些常用值 总结 在python中使用正则表达式,主要通过下面的几个方法 search(pattern, string, flags=0) 扫描整个string并返回匹配pattern的结果(None或对象

  • python中cPickle类使用方法详解

    在python中,一般可以使用pickle类来进行python对象的序列化,而cPickle提供了一个更快速简单的接口,如python文档所说的:"cPickle – A faster pickle". cPickle可以对任意一种类型的python对象进行序列化操作,比如list,dict,甚至是一个类的对象等.而所谓的序列化,我的粗浅的理解就是为了能够完整的保存并能够完全可逆的恢复.在cPickle中,主要有四个函数可以做这一工作,下面使用例子来介绍. 1. dump: 将pyth

  • python中map()函数使用方法详解

    目录 总结 先看map()函数底层封装介绍: 注释中翻译为: map(func, *iterables)--> map对象 创建一个迭代器,使用来自的参数计算函数每个迭代器.当最短的迭代器耗尽时停止. 作用: map(func, lst) ,将传⼊的函数变量 func 作⽤到 lst 变量的每个元素中,并将结果组成新的列表 (Python2)/ 迭代器(Python3) 返回. 注意: map()返回的是一个迭代器,直接打印map()的结果是返回的一个对象. 示例代码1: lst = ['1',

  • python编程之requests在网络请求中添加cookies参数方法详解

    哎,好久没有学习爬虫了,现在想要重新拾起来.发现之前学习爬虫有些粗糙,竟然连requests中添加cookies都没有掌握,惭愧.废话不宜多,直接上内容. 我们平时使用requests获取网络内容很简单,几行代码搞定了,例如: import requests res=requests.get("https://cloud.flyme.cn/browser/index.jsp") print res.content 你没有看错,真的只有三行代码.但是简单归简单,问题还是不少的. 首先,这

  • 对python numpy数组中冒号的使用方法详解

    python中冒号实际上有两个意思:1.默认全部选择:2. 指定范围. 下面看例子 定义数组 X=array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]) 输出为5x4二维数组 第一种意思,默认全部选择: 如,X[:,0]就是取矩阵X的所有行的第0列的元素,X[:,1] 就是取所有行的第1列的元素 第二种意思,指定范围,注意这里含左不含右 如,X[:, m:n]即取矩阵X的所有行中的的第m到n-1列数据,含左不含右

  • python中模块的__all__属性详解

    python模块中的__all__属性,可用于模块导入时限制,如: from module import * 此时被导入模块若定义了__all__属性,则只有__all__内指定的属性.方法.类可被导入. 若没定义,则导入模块内的所有公有属性,方法和类 # kk.py class A(): def __init__(self,name,age): self.name=name self.age=age class B(): def __init__(self,name,id): self.nam

  • Python 中迭代器与生成器实例详解

    Python 中迭代器与生成器实例详解 本文通过针对不同应用场景及其解决方案的方式,总结了Python中迭代器与生成器的一些相关知识,具体如下: 1.手动遍历迭代器 应用场景:想遍历一个可迭代对象中的所有元素,但是不想用for循环 解决方案:使用next()函数,并捕获StopIteration异常 def manual_iter(): with open('/etc/passwd') as f: try: while True: line=next(f) if line is None: br

随机推荐