linux 网络编程 socket选项的实现

socket选项函数

功能:用来读取和设置socket文件描述符属性的方法

#include <sys/scoket.h>
int getsockopt ( int sockfd, int level, int option_name, void* option_value, socklen_t* restrict option_len );
int setsockopt ( int sockfd, int level, int option_name, const void* option_value, socklen_t option_len);

socket选项表如下:

getsockopt和setsockopt 这两个函数成功时返回0,失败时返回-1并设置errno。

对于服务器而言,有部分socket选项只能在调用listen系统调用前针对监听socket设置才有效。这是因为连接socket只能由accept调用返回,而accept从listen监听队列接受的连接至少已经完成了TCP三次握手的前两个步骤(因为listen监听队列中的连接至少已进入SYN_RCVD状态),这说明服务器已经往被接收连接上发送出了TCP同步报文段。但有的socket选项却应该在TCP同步报文段中设置,比如TCP最大报文段选项。对这种情况,linux给开发人员提供的解决方案是:对监听socket设置这些socket选项,那么accept返回的连接socket将自动继承这些选项。这些选项包括:SO_DEBUG、SO_DONTROUTE、SO_KEEPALIVE、SO_LINGER、SO_OOBINLINE、SO_RCVBUF、SO_RCVLOWAT、SO_SNDBUF、SO_SNDLOWAT、TCP_MAXSEG和TCP_NODELAY。

对于客户端而言,这些socket选项则应该在调用connect函数之前设置,因为connect调用成功返回之后,TCP三次握手已完成。

SO_REUSEADDR选项

前面讨论过TCP连接的TIME_WAIT状态,并提到服务器程序可以通过设置socket选项SO_REUSEADDR来强制使用被处于TIME_WAIT状态的连接占用的socket地址。

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

int main( int argc, char* argv[] )
{
  if( argc <= 2 )
  {
    printf( "usage: %s ip_address port_number\n", basename( argv[0] ) );
    return 1;
  }
  const char* ip = argv[1];
  int port = atoi( argv[2] );

  int sock = socket( PF_INET, SOCK_STREAM, 0 );
  assert( sock >= 0 );
  int reuse = 1;
  setsockopt( sock, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof( reuse ) );

  struct sockaddr_in address;
  bzero( &address, sizeof( address ) );
  address.sin_family = AF_INET;
  inet_pton( AF_INET, ip, &address.sin_addr );
  address.sin_port = htons( port );
  int ret = bind( sock, ( struct sockaddr* )&address, sizeof( address ) );
  assert( ret != -1 );

  ret = listen( sock, 5 );
  assert( ret != -1 );

  struct sockaddr_in client;
  socklen_t client_addrlength = sizeof( client );
  int connfd = accept( sock, ( struct sockaddr* )&client, &client_addrlength );
  if ( connfd < 0 )
  {
    printf( "errno is: %d\n", errno );
  }
  else
  {
    char remote[INET_ADDRSTRLEN ];
    printf( "connected with ip: %s and port: %d\n",
      inet_ntop( AF_INET, &client.sin_addr, remote, INET_ADDRSTRLEN ), ntohs( client.sin_port ) );
    close( connfd );
  }

  close( sock );
  return 0;
}

经过setsocketopt的设置之后,即使sock处于TIME_WAIT状态,与之绑定的socket地址也可以立即被重用。此外,我们也可以通过修改内核参数/proc/sys/net/ipv4/tcp_tw_recycle 来快速回收被关闭的socket,从而使得TCP连接根本就不进入TIME_WAIT状态,进而允许应用程序立即重用本地的socket地址。

SO_RCVBUF和SO_SNDBUF选项

SO_RCVBUF和SO_SNDBUF选项分别表示TCP接收缓冲区和发送缓冲区的大小。不过,当我们用setsockopt来设置TCP的接收缓冲区和发送缓冲区的大小时,系统都会将其值加倍,并且不得小于其个最小值。TCP接收缓冲区的最小值是256字节,而发送缓冲区的最小值是2048字节(不过,不同的系统可能有不同的默认最小值)。此外,我们可以直接修改内核参数/proc/sys/net/ipv4/tcp_rmem和/proc/sys/net/ipv4/tcp_wmem来强制TCP接收缓冲区和发送缓冲区的大小没有最小值限制。

修改TCP发送缓冲区的客户端程序:

#include <sys/socket.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

#define BUFFER_SIZE 512

int main( int argc, char* argv[] )
{
  if( argc <= 3 )
  {
    printf( "usage: %s ip_address port_number send_bufer_size\n", basename( argv[0] ) );
    return 1;
  }
  const char* ip = argv[1];
  int port = atoi( argv[2] );

  struct sockaddr_in server_address;
  bzero( &server_address, sizeof( server_address ) );
  server_address.sin_family = AF_INET;
  inet_pton( AF_INET, ip, &server_address.sin_addr );
  server_address.sin_port = htons( port );

  int sock = socket( PF_INET, SOCK_STREAM, 0 );
  assert( sock >= 0 );

  int sendbuf = atoi( argv[3] );
  int len = sizeof( sendbuf );
  setsockopt( sock, SOL_SOCKET, SO_SNDBUF, &sendbuf, sizeof( sendbuf ) );
  getsockopt( sock, SOL_SOCKET, SO_SNDBUF, &sendbuf, ( socklen_t* )&len );
  printf( "the tcp send buffer size after setting is %d\n", sendbuf );

  if ( connect( sock, ( struct sockaddr* )&server_address, sizeof( server_address ) ) != -1 )
  {
    char buffer[ BUFFER_SIZE ];
    memset( buffer, 'a', BUFFER_SIZE );
    send( sock, buffer, BUFFER_SIZE, 0 );
  }

  close( sock );
  return 0;
}

修改TCP接收缓冲区的服务器程序:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

#define BUFFER_SIZE 1024

int main( int argc, char* argv[] )
{
  if( argc <= 3 )
  {
    printf( "usage: %s ip_address port_number receive_buffer_size\n", basename( argv[0] ) );
    return 1;
  }
  const char* ip = argv[1];
  int port = atoi( argv[2] );

  struct sockaddr_in address;
  bzero( &address, sizeof( address ) );
  address.sin_family = AF_INET;
  inet_pton( AF_INET, ip, &address.sin_addr );
  address.sin_port = htons( port );

  int sock = socket( PF_INET, SOCK_STREAM, 0 );
  assert( sock >= 0 );
  int recvbuf = atoi( argv[3] );
  int len = sizeof( recvbuf );
  setsockopt( sock, SOL_SOCKET, SO_RCVBUF, &recvbuf, sizeof( recvbuf ) );
  getsockopt( sock, SOL_SOCKET, SO_RCVBUF, &recvbuf, ( socklen_t* )&len );
  printf( "the receive buffer size after settting is %d\n", recvbuf );

  int ret = bind( sock, ( struct sockaddr* )&address, sizeof( address ) );
  assert( ret != -1 );

  ret = listen( sock, 5 );
  assert( ret != -1 );

  struct sockaddr_in client;
  socklen_t client_addrlength = sizeof( client );
  int connfd = accept( sock, ( struct sockaddr* )&client, &client_addrlength );
  if ( connfd < 0 )
  {
    printf( "errno is: %d\n", errno );
  }
  else
  {
    char buffer[ BUFFER_SIZE ];
    memset( buffer, '\0', BUFFER_SIZE );
    while( recv( connfd, buffer, BUFFER_SIZE-1, 0 ) > 0 ){}
    close( connfd );
  }

  close( sock );
  return 0;
}

运行结果:

root@iZbp1anc6yju2dks3nw5j0Z:~/test/socket# ./client 127.0.0.1 12345 2000
the tcp send buffer size after setting is 4608

root@iZbp1anc6yju2dks3nw5j0Z:~/test/socket# ./server 127.0.0.1 12345 50
the receive buffer size after settting is 2304

如上说明:当我们用setsockopt来设置TCP的接收缓冲区和发送缓冲区的大小时,系统都会将其值加倍,并且不得小于其个最小值。

SO_RCVLOWAT和SO_SNDLOWAT选项

  • SO_RCVLOWAT和SO_SNDLOWAT选项分别表示TCP接收缓冲区和发送缓冲区的低水位标记。它们一般被I/O复用系统调用,用来判断socket是否可读或可写。当TCP接收缓冲区中可读数据的总数大于其低水位标记时,I/O复用系统调用将通知应用程序可以从对应的socket上读取数据;当TCP发送缓冲区中的空闲空间(可以写入数据的空间)大于其低水位标记时,I/O复用系统调用将通知应用程序可以往对应的socket上写入数据。
  • 默认情况下,TCP接收缓冲区的低水位标记和TCP发送缓冲区的低水位标记均为1字节。

SO_LINGER选项

SO_LINGER选项用于控制close系统调用在关闭TCP连接时的行为。默认情况下,当我们使用close系统调用来关闭一个socket时,close将立即返回,TCP模块负责把该socket对应的TCP发送缓冲区中残留的数据发送给对方。

设置SO_LINGER选项的值时,我们需要给setsockopt(getsockopt)系统调用传递一个linger类型的结构体,其定义如下:

#include <sys/socket.h>
struct linger
{
  int l_onoff; //开启(非0)还是关闭(0)该选项
  int l_linger; // 滞留时间
};
  • 根据linger结构体中两个成员变量的不同值,close 系统调用可能产生如下3种行为之一:
  • l_onoff 等于0。此时SO_LINGER选项不起作用,close用默认行为关闭socket。
  • l_onoff 不为0,l_linger等于0. 此时close 系统调用立即返回,TCP模块将丢弃被关闭的socket对应的TCP发送缓冲区中残留的数据,同时给对方一个复位报文段。因此,这种情况给服务器提供了异常终止一个连接的方法。l_onoff不为0,l_linger大于0 。此时close的行为取决于两个条件:(1)被关闭的socket对应的TCP发送缓冲区中是否还有残留的数据;(2)该socket是阻塞的还是非阻塞的。 对于阻塞的socket,close将等待一段长为l_linger的时间,直到TCP模块发送完所有残留数据并得到对方的确认。如果这段之间内TCP模块没有发送完残留数据并得到对方的确认,那么close系统调用将返回-1并设置errno为EWOULDBLOCK。 如果socket是非阻塞的,close将立即返回,此时我们需要根据其返回值和errno来判断残留数据是否已经发送完毕。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • linux下socket编程常用头文件(推荐)

    sys/types.h:数据类型定义 sys/socket.h:提供socket函数及数据结构 netinet/in.h:定义数据结构sockaddr_in arpa/inet.h:提供IP地址转换函数 netdb.h:提供设置及获取域名的函数 sys/ioctl.h:提供对I/O控制的函数 sys/poll.h:提供socket等待测试机制的函数 其他在网络程序中常见的头文件 unistd.h:提供通用的文件.目录.程序及进程操作的函数 errno.h:提供错误号errno的定义,用于错误处理

  • Linux进程间通信方式之socket使用实例

    套接字是一种通信机制,凭借这种机制,客户/服务器系统的开发工作既可以在本地单机上进行,也可以跨网络进行. 套接字的特性有三个属性确定,它们是:域(domain),类型(type),和协议(protocol).套接字还用地址作为它的名字.地址的格式随域(又被称为协议族,protocol family)的不同而不同.每个协议族又可以使用一个或多个地址族定义地址格式. 1.套接字的域 域指定套接字通信中使用的网络介质.最常见的套接字域是AF_INET,它是指Internet网络,许多Linux局域网使

  • Linux的Socket IO模型趣解

    前言 之前有看到用很幽默的方式讲解Windows的socket IO模型,借用这个故事,讲解下linux的socket IO模型: 老陈有一个在外地工作的女儿,不能经常回来,老陈和她通过信件联系. 他们的信会被邮递员投递到他们小区门口的收发室里.这和Socket模型非常类似. 下面就以老陈接收信件为例讲解linux的 Socket I/O模型. 一.同步阻塞模型 老陈的女儿第一次去外地工作,送走她之后,老陈非常的挂心她安全到达没有: 于是老陈什么也不干,一直在小区门口收发室里等着她女儿的报平安的

  • linux中高并发socket最大连接数的优化详解

    首先我们可以通过ulimit –a命令来查看系统的一些资源限制情况,如下: # ulimit -a core file size (blocks, -c) 1024 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 127422 max locked memory (kbytes, -l) 64 max memo

  • Linux下高并发socket最大连接数所受的各种限制(详解)

    1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统为每个TCP连接都要创建一个socket句柄,每个socket句柄同时也是一个文件句柄).可使用ulimit命令查看系统允许当前用户进程打开的文件数限制: [speng@as4 ~]$ ulimit -n 1024 这表示当前用户的每个进程最多允许同时打开1024个文件,这1024个文件中还得除去每个进

  • linux下开启php的sockets扩展支持实例

    下个相同版本的php源码,进行编译安装,再按照上面步骤搞,生成的so.copy到rpm装的那个,修改php.ini进行扩展就行了, 或者到网上找相同版本,相同系统 的编译好的so文件. 在linux下给PHP安装socket扩展,参考方法如下: #cd /usr/soft/php/ext/sockets (进入原php安装文件下的sockets目录) #/usr/local/php/bin/phpize (运行安装后的php安装文件下的phpize) #./configure --prefix=

  • 详解Linux的SOCKET编程

    本篇文章对Linux的SOCKET编程进行了详细解释,文章后面分享了一个编程实例供大家学习. 1. 网络中进程之间如何通信 进程通信的概念最初来源于单机系统.由于每个进程都在自己的地址范围内运行,为保证两个相互通信的进程之间既互不干扰又协调一致工作,操作系统为进程通信提供了相应设施,如 UNIX BSD有:管道(pipe).命名管道(named pipe)软中断信号(signal) UNIX system V有:消息(message).共享存储区(shared memory)和信号量(semap

  • Linux中使用C语言实现基于UDP协议的Socket通信示例

    linux下udp服务器端源码示例: #include <errno.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <stdlib.h> #include <string.h> #include <netinet/in.h> #include <stdio.h> #include <un

  • Linux网络编程之UDP Socket程序示例

    在网络传输协议中,TCP协议提供的是一种可靠的,复杂的,面向连接的数据流(SOCK_STREAM)传输服务,它通过三段式握手过程建立连接.TCP有一种"重传确认"机制,即接收端收到数据后要发出一个肯定确认的信号,发送端如果收到接收端肯定确认的信号,就会继续发送其他的数据,如果没有,它就会重新发送. 相对而言,UDP协议则是一种无连接的,不可靠的数据报(SOCK_DGRAM)传输服务.使用UDP套接口不用建立连接,服务端在调用socket()生成一个套接字并调用bind()绑定端口后就可

  • Linux网络编程之socket文件传输示例

    本文所述示例程序是基于Linux平台的socket网络编程,实现文件传输功能.该示例是基于TCP流协议实现的socket网络文件传输程序.采用C语言编写.最终能够实现传输任何格式文件的文件传输程序. 具体实现代码如下: Server端代码如下: /************************************************************************* > File Name: Server.c > Author: SongLee ***********

  • 详解Linux Socket编程(不限Linux)

    我们深谙信息交流的价值,那网络中进程之间如何通信,如我们每天打开浏览器浏览网页时,浏览器的进程怎么与web服务器通信的?当你用QQ聊天时,QQ进程怎么与服务器或你好友所在的QQ进程通信?这些都得靠socket?那什么是socket?socket的类型有哪些?还有socket的基本函数,这些都是本文想介绍的.本文的主要内容如下: 1.网络中进程之间如何通信? 本地的进程间通信(IPC)有很多种方式,但可以总结为下面4类: 消息传递(管道.FIFO.消息队列) 同步(互斥量.条件变量.读写锁.文件和

  • Linux Socket 编程简介和实现

    在 TCP/IP 协议中,"IP地址 + TCP或UDP端口号" 可以唯一标识网络通讯中的一个进程,"IP地址+端口号" 就称为 socket.本文以一个简单的 TCP 协议为例,介绍如何创建基于 TCP 协议的网络程序. TCP 协议通讯流程 下图描述了 TCP 协议的通讯流程(此图来自互联网): 下图则描述 TCP 建立连接的过程(此图来自互联网): 服务器调用 socket().bind().listen() 函数完成初始化后,调用 accept() 阻塞等待

  • linux socket通讯获取本地的源端口号的实现方法

    关于TCP IP网络通讯的资料非常多,TCP IP通过IP数据包模式进行端对端通讯.典型的TCP数据包如下 可以看到数据包包含了源端口号和目的端口号,客户端socket向服务端发起连接时,系统会给socket随机分配一个源端口号,我们可以通过getsocketname来获取连接成功的socket的原端口信息. 函数原型 #include <sys/socket.h> int getsockname(int sockfd, struct sockaddr *addr, socklen_t *ad

随机推荐