利用pyecharts实现地图可视化的例子

pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒,pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图。

今天我们就用pyecharts和jupyter notebook实现地图数据的可视化。

pyecharts v0.3.2以后,pyecharts 将不再自带地图 js 文件。如用户需要用到地图图表,可自行安装对应的地图文件包。

下面介绍如何安装。

地图文件被分成了三个 Python 包,分别为:

全球国家地图: echarts-countries-pypkg (1.9MB)

中国省级地图: echarts-china-provinces-pypkg (730KB)

中国市级地图: echarts-china-cities-pypkg (3.8MB)

直接使用python的pip安装:

pip install echarts-countries-pypkg
pip install echarts-china-provinces-pypkg
pip install echarts-china-cities-pypkg

这里要提醒大家,一定要注意,安装完地图包以后一定要重启jupyter notebook,不然是无法显示地图的。

安装完毕我们就可以直接画图了。

两个项目:

一、全国主要城市空气质量

from pyecharts import Geo

data = [
  ("海门", 9),("鄂尔多斯", 12),("招远", 12),("舟山", 12),("齐齐哈尔", 14),("盐城", 15),
  ("赤峰", 16),("青岛", 18),("乳山", 18),("金昌", 19),("泉州", 21),("莱西", 21),
  ("日照", 21),("胶南", 22),("南通", 23),("拉萨", 24),("云浮", 24),("梅州", 25),
  ("文登", 25),("上海", 25),("攀枝花", 25),("威海", 25),("承德", 25),("厦门", 26),
  ("汕尾", 26),("潮州", 26),("丹东", 27),("太仓", 27),("曲靖", 27),("烟台", 28),
  ("福州", 29),("瓦房店", 30),("即墨", 30),("抚顺", 31),("玉溪", 31),("张家口", 31),
  ("阳泉", 31),("莱州", 32),("湖州", 32),("汕头", 32),("昆山", 33),("宁波", 33),
  ("湛江", 33),("揭阳", 34),("荣成", 34),("连云港", 35),("葫芦岛", 35),("常熟", 36),
  ("东莞", 36),("河源", 36),("淮安", 36),("泰州", 36),("南宁", 37),("营口", 37),
  ("惠州", 37),("江阴", 37),("蓬莱", 37),("韶关", 38),("嘉峪关", 38),("广州", 38),
  ("延安", 38),("太原", 39),("清远", 39),("中山", 39),("昆明", 39),("寿光", 40),
  ("盘锦", 40),("长治", 41),("深圳", 41),("珠海", 42),("宿迁", 43),("咸阳", 43),
  ("铜川", 44),("平度", 44),("佛山", 44),("海口", 44),("江门", 45),("章丘", 45),
  ("肇庆", 46),("大连", 47),("临汾", 47),("吴江", 47),("石嘴山", 49),("沈阳", 50),
  ("苏州", 50),("茂名", 50),("嘉兴", 51),("长春", 51),("胶州", 52),("银川", 52),
  ("张家港", 52),("三门峡", 53),("锦州", 54),("南昌", 54),("柳州", 54),("三亚", 54),
  ("自贡", 56),("吉林", 56),("阳江", 57),("泸州", 57),("西宁", 57),("宜宾", 58),
  ("呼和浩特", 58),("成都", 58),("大同", 58),("镇江", 59),("桂林", 59),("张家界", 59),
  ("宜兴", 59),("北海", 60),("西安", 61),("金坛", 62),("东营", 62),("牡丹江", 63),
  ("遵义", 63),("绍兴", 63),("扬州", 64),("常州", 64),("潍坊", 65),("重庆", 66),
  ("台州", 67),("南京", 67),("滨州", 70),("贵阳", 71),("无锡", 71),("本溪", 71),
  ("克拉玛依", 72),("渭南", 72),("马鞍山", 72),("宝鸡", 72),("焦作", 75),("句容", 75),
  ("北京", 79),("徐州", 79),("衡水", 80),("包头", 80),("绵阳", 80),("乌鲁木齐", 84),
  ("枣庄", 84),("杭州", 84),("淄博", 85),("鞍山", 86),("溧阳", 86),("库尔勒", 86),
  ("安阳", 90),("开封", 90),("济南", 92),("德阳", 93),("温州", 95),("九江", 96),
  ("邯郸", 98),("临安", 99),("兰州", 99),("沧州", 100),("临沂", 103),("南充", 104),
  ("天津", 105),("富阳", 106),("泰安", 112),("诸暨", 112),("郑州", 113),("哈尔滨", 114),
  ("聊城", 116),("芜湖", 117),("唐山", 119),("平顶山", 119),("邢台", 119),("德州", 120),
  ("济宁", 120),("荆州", 127),("宜昌", 130),("义乌", 132),("丽水", 133),("洛阳", 134),
  ("秦皇岛", 136),("株洲", 143),("石家庄", 147),("莱芜", 148),("常德", 152),("保定", 153),
  ("湘潭", 154),("金华", 157),("岳阳", 169),("长沙", 175),("衢州", 177),("廊坊", 193),
  ("菏泽", 194),("合肥", 229),("武汉", 273),("大庆", 279)]
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff",
     title_pos="center", width=1000,
     height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, visual_range=[0, 200], maptype='china',visual_text_color="#fff",
    symbol_size=10, is_visualmap=True)
geo.render("全国主要城市空气质量.html")#生成html文件
geo#直接在notebook中显示

结果如下:

二、沧州市图例面积

from pyecharts import Map
districts = ['运河区', '新华区', '泊头市', '任丘市', '黄骅市', '河间市', '沧县', '青县', '东光县', '海兴县', '盐山县', '肃宁县', '南皮县', '吴桥县', '献县', '孟村回族自治县']
areas = [109.92, 109.47, 1006.5, 1023.0, 1544.7, 1333.0, 1104.0, 968.0, 730.0, 915.1, 796.0, 525.0, 794.0, 600.0, 1191.0, 387.0]
map_1 = Map("沧州市图例-各区面积", width=1200, height=600)
map_1.add("", districts, areas, maptype='沧州', is_visualmap=True, visual_range=[min(areas), max(areas)],
    visual_text_color='#000', is_map_symbol_show=False, is_label_show=True)
map_1

最后,附上pyecharts的中文文档地址,感谢作者。http://pyecharts.org

以上这篇利用pyecharts实现地图可视化的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python 数据可视化pyecharts的使用详解

    什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生成 Echarts 图表的类库.实际上就是 Echarts 与 Python 的对接. 使用 pyecharts可以生成独立的网页,也可以在 flask , Django中集成使用. pyecharts包含的图表 Bar(柱状图/条形图) Bar3D(3D 柱状图) Boxplot(箱形图) Effe

  • 如何利用Pyecharts可视化微信好友

    前言 最近在研究 pyecharts  的用法,它是 python 的一个可视化工具,然后就想着结合微信来一起玩 不多说,直接看效果: 环境配置 pip install pyecharts pip install snapshot_selenium pip install echarts-countries-pypkg pip install echarts-china-provinces-pypkg pip install echarts-china-cities-pypkg pip inst

  • 利用pyecharts实现地图可视化的例子

    pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 JS 库.用 Echarts 生成的图可视化效果非常棒,pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图. 今天我们就用pyecharts和jupyter notebook实现地图数据的可视化. pyecharts v0.3.2以后,pyecharts 将不再自带地图 js 文件.如用户需要用到地图图表,可自行安装对应的地图文件包. 下面介绍

  • Python利用folium实现地图可视化

    folium的简介 用Python处理数据,然后用Folium将它在Leaflet地图上进行可视化.Folium能够将通过Python处理后的数据轻松地在交互式的Leaflet地图上进行可视化展示.它不单单可以在地图上展示数据的分布图,还可以使用Vincent/Vega在地图上加以标记. 这个开源库中有许多来自OpenStreetMap.MapQuest Open.MapQuestOpen Aerial.Mapbox和Stamen的内建地图元件,而且支持使用Mapbox或Cloudmade的AP

  • 利用pyecharts读取csv并进行数据统计可视化的实现

    因为需要一个html形式的数据统计界面,所以做了一个基于pyecharts包的可视化程序,当然matplotlib还是常用的数据可视化包,只不过各有优劣:基本功能概述就是读取csv文件数据,对每列进行数据统计并可视化,最后形成html动态界面,选择pyecharts的最主要原因就是这个动态界面简直非常炫酷. 先上成品图: 数据读取和数据分析模块: #导入csv模块 import csv #导入可视化模块 from matplotlib import pyplot as plt from pyla

  • python用pyecharts实现地图数据可视化

    有的时候,我们需要对不同国家或地区的某项指标进行比较,可简单通过直方图加以比较.但直方图在视觉上并不能很好突出地区间的差异,因此考虑地理可视化,通过地图上位置(地理位置)和颜色(颜色深浅代表数值差异)两个元素加以体现.在本文案例中,基于第三方库pyecharts,对中国各省2010-2019年的GDP进行绘制. 我们先来看看最终效果: 关于绘图数据 基于时间和截面两个维度,可把数据分为截面数据.时间序列及面板数据.在本文案例中,某一年各省的GDP属于截面数据,多年各省的GDP属于面板数据.因此,

  • Python实现疫情地图可视化

    一. json模块 JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于阅读和编写,同时也易于机器解析和生成,并有效地提升网络传输效率. json.loads():将json格式的str转化成python的数据格式: json.loads():将python的数据格式(字典或列表)转化成json格式: # 如何将json数据解析成我们所熟悉的Python数据类型? import json # 将json格式的str转化成python的数据格式:字典 d

  • 一文带你掌握Pyecharts地理数据可视化的方法

    本文主要介绍了Pyecharts地理数据可视化,分享给大家,具体如下: 一.Pyecharts简介和安装 1. 简介 Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可.而 Python 是一门富有表达力的语言,很适合用于数据处理.当数据分析遇上数据可视化时,pyecharts 诞生了. 简洁的 API 设计,使用如丝滑般流畅,支持链式调用 囊括了 30+ 种常见图表,应有尽有 支持主流 Notebook 环境,Jupyter Noteboo

  • 利用Python进行数据可视化的实例代码

    目录 前言 首先搭建环境 实例代码 例子1: 例子2: 例子3: 例子4: 例子5: 例子6: 总结 前言 前面写过一篇用Python制作PPT的博客,感兴趣的可以参考 用Python制作PPT 这篇是关于用Python进行数据可视化的,准备作为一个长贴,随时更新有价值的Python可视化用例,都是网上搜集来的,与君共享,本文所有测试均基于Python3. 首先搭建环境 $pip install pyecharts -U $pip install echarts-themes-pypkg $pi

  • vue 地图可视化 maptalks 篇实例代码详解

    Maptalks 项目是一个 HTML5 的地图引擎, 基于原生 ES6 Javascript 开发: - 二三维一体化地图, 通过二维地图的旋转 /倾斜增加三维视角 - 插件化设计, 能与其他图形库结合, 开发各种二三维效果, 例如 echarts/d3/THREE 等 - 很认真的优化了绘制性能 - 很重视测试, 有接近 1.5K 个单元测试用例, 所以稳定性还不错, 已经应用在很多大大小小的系统上了 上面是一段 maptalks 官方介绍,下面来创建工程.首先利用 vue-cli3 搭建一

  • Python实现决策树并且使用Graphvize可视化的例子

    一.什么是决策树(decision tree)--机器学习中的一个重要的分类算法 决策树是一个类似于数据流程图的树结构:其中,每个内部节点表示一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或者类的分布,树的最顶层是根结点 根据天气情况决定出游与否的案例 二.决策树算法构建 2.1决策树的核心思路 特征选择:从训练数据的特征中选择一个特征作为当前节点的分裂标准(特征选择的标准不同产生了不同的特征决策树算法). 决策树生成:根据所选特征评估标准,从上至下递归地生成子节点,直到数据集

  • Python实现决策树并且使用Graphviz可视化的例子

    一.什么是决策树(decision tree)--机器学习中的一个重要的分类算法 决策树是一个类似于数据流程图的树结构:其中,每个内部节点表示一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或者类的分布,树的最顶层是根结点 根据天气情况决定出游与否的案例 二.决策树算法构建 2.1决策树的核心思路 特征选择:从训练数据的特征中选择一个特征作为当前节点的分裂标准(特征选择的标准不同产生了不同的特征决策树算法). 决策树生成:根据所选特征评估标准,从上至下递归地生成子节点,直到数据集

随机推荐