Anaconda2 5.2.0安装使用图文教程

Anacond的介绍

Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。 因为包含了大量的科学包,Anaconda 的下载文件比较大(约 531 MB),如果只需要某些包,或者需要节省带宽或存储空间,也可以使用Miniconda这个较小的发行版(仅包含conda和 Python)。

Conda是一个开源的包、环境管理器,可以用于在同一个机器上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换

Anaconda包括Conda、Python以及一大堆安装好的工具包,比如:numpy、pandas等

Miniconda包括Conda、Python

Anacond下载

下载地址:官网地址

Anaconda 是跨平台的,有 Windows、macOS、Linux 版本,我们这里以 Windows 版本为例,点击那个 Windows 图标。

我这里选择下载

Python 2.7 version *--Python 2.7 版 *

64-Bit Graphical Installer (564 MB) --64位图形安装程序(564 MB)

当然,你也可以根据自己的实际情况,选择 Python 3.6版的,或者 32-Bit 版本的。

安装包有 564MB,因为网速的关系,下载时间可能会比较长,请耐心等待。我这里下载完成 Anaconda2-5.2.0-Windows-x86_64.exe文件了。

安装 Anaconda 

双击下载好的 Anaconda2-5.2.0-Windows-x86_64.exe文件,出现如下界面,点击 Next 即可。

点击Next

点击 I Agree (我同意),不同意,当然就没办法继续安装啦。

Install for: Just me还是All Users,假如你的电脑有好几个 Users ,才需要考虑这个问题.其实我们电脑一般就一个 User,就我们一个人使用,如果你的电脑有多个用户,选择All Users,我这里直接 All User,继续点击 Next 。

Destination Folder 是“目标文件夹”的意思,可以选择安装到什么地方。默认是安装到 C:\ProgramData\Anaconda2文件夹下。你也可以选择 Browse... ,选择想要安装的文件夹。我这里 C 盘空间充裕,所以我直接就装到默认的地方。

这里提一下,Anaconda 很强大,占用空间也不小啊,2.6GB,差不多是一部高清电影的体积了。不过,为了学习,这点硬盘空间算什么呢。

继续点击 Next> 。

这里来到 Advanced Options 了,所谓的“高级选项”。如果你英文好,有一定背景知识的话,肯定明白这界面上的意思。两个默认就好,第一个是加入环境变量,第二个是默认使用 Python 2.7,点击“Install”,终于开始安装额。

安装时间根据你的电脑配置而异,电脑配置高,硬盘是固态硬盘,速度就更快。安装过程其实就是把 Anaconda2-5.2.0-Windows-x86_64.exe文件里压缩的各种 dll 啊,py 文件啊,全部写到安装目标文件夹里。

过程还是很漫长的,毕竟 2.6GB 的无数个小文件啊,请耐心等待。

经过漫长的等待,终于安装完成 Installation Complete (安装完成)了,点击最后一个 Next>。

点击Install Microsoft VSCode

点击 Finish,那两个 √ 可以取消。

配置环境变量

如果是windows的话需要去 控制面板\系统和安全\系统\高级系统设置\环境变量\用户变量\PATH 中添加 anaconda的安装目录的Scripts文件夹, 比如我的路径是C:\ProgramData\Anaconda2\Scripts, 看个人安装路径不同需要自己调整.

之后就可以打开命令行(最好用管理员模式打开) 输入 conda --version

如果输出conda 4.5.4之类的就说明环境变量设置成功了.

为了避免可能发生的错误, 我们在命令行输入conda upgrade --all 先把所有工具包进行升级

管理虚拟环境

接下来我们就可以用anaconda来创建我们一个个独立的python环境了.接下来的例子都是在命令行操作的,请打开你的命令行吧.

activate

activate 能将我们引入anaconda设定的虚拟环境中, 如果你后面什么参数都不加那么会进入anaconda自带的base环境,

你可以输入python试试, 这样会进入base环境的python解释器, 如果你把原来环境中的python环境去除掉会更能体会到, 这个时候在命令行中使用的已经不是你原来的python而是base环境下的python.而命令行前面也会多一个(base) 说明当前我们处于的是base环境下。

创建自己的虚拟环境

我们当然不满足一个base环境, 我们应该为自己的程序安装单独的虚拟环境.

创建一个名称为learn的虚拟环境并指定python版本为3(这里conda会自动找3中最新的版本下载)

conda create -n learn python=2

于是我们就有了一个learn的虚拟环境, 接下来我们切换到这个环境, 一样还是用activae命令 后面加上要切换的环境名称

切换环境

activate learn

如果忘记了名称我们可以先用

conda env list

去查看所有的环境

现在的learn环境除了python自带的一些官方包之外是没有其他包的, 一个比较干净的环境我们可以试试

先输入python打开python解释器然后输入

>>> import requests

会报错找不到requests包, 很正常.接下来我们就要演示如何去安装requests包

exit()

退出python解释器

安装第三方包

输入

conda install requests

或者

pip install requests

来安装requests包.

安装完成之后我们再输入python进入解释器并import requests包, 这次一定就是成功的了.

卸载第三方包

那么怎么卸载一个包呢

conda remove requests

或者

pip uninstall requests

就行啦.

查看环境包信息

要查看当前环境中所有安装了的包可以用

conda list

导入导出环境

如果想要导出当前环境的包信息可以用

conda env export > environment.yaml

将包信息存入yaml文件中.

当需要重新创建一个相同的虚拟环境时可以用

conda env create -f environment.yaml

其实命令很简单对不对, 我把一些常用的在下面给出来, 相信自己多打两次就能记住

activate // 切换到base环境
activate learn // 切换到learn环境
conda create -n learn python=3 // 创建一个名为learn的环境并指定python版本为3(的最新版本)
conda env list // 列出conda管理的所有环境
conda list // 列出当前环境的所有包
conda install requests 安装requests包
conda remove requests 卸载requets包
conda remove -n learn --all // 删除learn环境及下属所有包
conda update requests 更新requests包
conda env export > environment.yaml // 导出当前环境的包信息
conda env create -f environment.yaml // 用配置文件创建新的虚拟环境

深入一下

或许你会觉得奇怪为啥anaconda能做这些事, 他的原理到底是什么, 我们来看看anaconda的安装目录

这里只截取了一部分, 但是我们和本文章最开头的python环境目录比较一下, 可以发现其实十分的相似, 其实这里就是base环境. 里面有着一个基本的python解释器, lLib里面也有base环境下的各种包文件.

那我们自己创建的环境去哪了呢, 我们可以看见一个envs, 这里就是我们自己创建的各种虚拟环境的入口, 点进去看看

可以发现我们之前创建的learn目录就在下面, 再点进去

这不就是一个标准的python环境目录吗?

这么一看, anaconda所谓的创建虚拟环境其实就是安装了一个真实的python环境, 只不过我们可以通过activate,conda等命令去随意的切换我们当前的python环境, 用不同版本的解释器和不同的包环境去运行python脚本.

JetBrains PyCharm 连接

在工作环境中我们会集成开发环境去编码, 这里推荐JB公司的PyCharm, 而PyCharm也能很方便的和anaconda的虚拟环境结合

在Setting => Project => Project Interpreter 里面修改 Project Interpreter , 点击齿轮标志再点击Add Local为你某个环境的python.exe解释器就行了

比如你要在learn环境中编写程序, 那么就修改为C:\Users\Administrator\AppData\Local\conda\conda\envs\learn, 可以看到这时候下面的依赖包也变成了learn环境中的包了.接下来我们就可以在pycharm中愉快的编码了。

Anaconda 初体验

按下 Windows 徽标键,调出 Windows 开始菜单,可以看到 “最近添加”的:Anaconda2(64-bit)

Anaconda Prompt

打开Anaconda Prompt,这个窗口和doc窗口一样的,输入命令就可以控制和配置python,最常用的是conda命令,这个pip的用法一样,此软件都集成了,你可以直接用,点开的话如下图。用命令“conda list”查看已安装的包,从这些库中我们可以发现NumPy,SciPy,Matplotlib,Pandas,说明已经安装成功了!

还可以使用conda命令进行一些包的安装和更新

conda list:列出所有的已安装的packages

conda install name:其中name是需要安装packages的名字,比如,我安装numpy包,输入上面的命令就是“conda install numpy”。单词之间空一格,然后回车,输入y就可以了。

安装完anaconda,就相当于安装了Python、IPython、集成开发环境Spyder、一些包等等。你可以在Windows下的cmd下查看:

Anaconda Navigtor

用于管理工具包和环境的图形用户界面,后续涉及的众多管理命令也可以在 Navigator 中手工实现。

Jupyter notebook

基于web的交互式计算环境,可以编辑易于人们阅读的文档,用于展示数据分析的过程。

Qtconsole

一个可执行 IPython 的仿终端图形界面程序,相比 Python Shell 界面,qtconsole 可以直接显示代码生成的图形,实现多行代码输入执行,以及内置许多有用的功能和函数。

Spyder

一个使用Python语言、跨平台的、科学运算集成开发环境。

点击 Anaconda Navigator ,第一次启用,会初始化,耐心等待一段时间,加载完成,界面如图。

Spyder编辑器,我们以后就可以用这款编辑器来编写代码,它最大优点就是模仿MATLAB的“工作空间”。spyder.exe放在安装目录下的Scripts里面,如我的是C:\ProgramData\Anaconda2\Scripts\spyder.exe, 直接双击就能运行。我们可以右键发送到桌面快捷方式,以后运行就比较方便了。

我们简单编写一个程序来测试一下安装是否成功,该程序用来打开一张图片并显示。首先准备一张图片,然后打开spyder,编写如下代码:

# -*- coding: utf-8 -*-

"""
Spyder Editor

This is a temporary script file.
"""
from skimage import io

img = io.imread('C:/Users/Administrator/Desktop/379283176280170726.jpg')

io.imshow(img)

将其中的C:/Users/Administrator/Desktop/379283176280170726.jpg改成你自己要显示图片的位置,然后点击上面工具栏里的绿色三角进行运行,最终显示如下:

jupyterlab 

我们点击 jupyterlab 下面的 Launch ,会在默认浏览器(我这里是 Chrome)打开 http://localhost:8888/lab 这样一个东东,这里就可以输入 Python 代码啦,来一句 Hello World 吧。

我们可以打开 Anaconda Navigator -> Launch jupyterlab ,也可以直接在浏览器输入 http://localhost:8888/lab (可以保存为书签)。如果是布置在云端,可以输入服务器域名(IP),是不是很爽?

VSCode

Visual Studio Code是一个轻量级但功能强大的源代码编辑器,可在桌面上运行,适用于Windows,macOS和Linux。它内置了对JavaScript,TypeScript和Node.js的支持,并为其他语言(如C ++,C#,Java,Python,PHP,Go)和运行时(如.NET和Unity)提供了丰富的扩展生态系统。

Glueviz

Glue是一个Python库,用于探索相关数据集内部和之间的关系。其主要特点包括:

链接统计图形。使用Glue,用户可以创建数据的散点图,直方图和图像(2D和3D)。胶水专注于刷牙和链接范例,其中任何图形中的选择传播到所有其他图形。

灵活地跨数据链接。Glue使用不同数据集之间存在的逻辑链接来覆盖不同数据的可视化,并跨数据集传播选择。这些链接由用户指定,并且是任意灵活的。

完整的脚本功能。Glue是用Python编写的,并且建立在其标准科学库(即Numpy,Matplotlib,Scipy)之上。用户可以轻松地集成他们自己的python代码进行数据输入,清理和分析。

Orange3

交互式数据可视化

通过巧妙的数据可视化执行简单的数据分析。探索统计分布,箱形图和散点图,或深入了解决策树,层次聚类,热图,MDS和线性投影。即使您的多维数据也可以在2D中变得合理,特别是在智能属性排名和选择方面。

老师和学生都喜欢它

在教授数据挖掘时,我们喜欢说明而不是仅仅解释。而橙色很棒。Orange在世界各地的学校,大学和专业培训课程中使用,支持数据科学概念的实践培训和视觉插图。甚至还有专门为教学设计的小部件。

附加组件扩展功能

使用Orange中可用的各种附加组件从外部数据源挖掘数据,执行自然语言处理和文本挖掘,进行网络分析,推断频繁项目集并执行关联规则挖掘。此外,生物信息学家和分子生物学家可以使用Orange通过差异表达对基因进行排序并进行富集分析。

Rstudio

R软件自带的有写脚本的工具,可是我不是很喜欢用(并不是说不好哈),我更喜欢用RStudio(网上还有Tinn-R,RWinEdt等)。因为我觉得其本身比较方便,另外在编程的时候有些功能很方便。下面这个界面是我修改了主题的,下面我将介绍如何修改主题,来方便编程。

结语

现在你是不是发现用上anaconda就可以十分优雅简单的解决上面所提及的单个python环境所带来的弊端了呢, 而且也明白了其实这一切的实现并没有那么神奇.

当然anaconda除了包管理之外还在于其丰富数据分析包, 不过那就是另一个内容了, 我们先学会用anaconda去换一种方法管里自己的开发环境, 这已经是一个很大的进步了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Anaconda入门使用总结

    序 Python易用,但用好却不易,其中比较头疼的就是包管理和Python不同版本的问题,特别是当你使用Windows的时候.为了解决这些问题,有不少发行版的Python,比如WinPython.Anaconda等,这些发行版将python和许多常用的package打包,方便pythoners直接使用,此外,还有virtualenv.pyenv等工具管理虚拟环境. 个人尝试了很多类似的发行版,最终选择了Anaconda,因为其强大而方便的包管理与环境管理的功能.该文主要介绍下Anaconda,对

  • Windows下Anaconda的安装和简单使用方法

    Anaconda is a completely free Python distribution (including for commercial use and redistribution). It includes over 195 of the most popular Python packagesfor science, math, engineering, data analysis. 1.安装anaconda 之前什么都不需要安装,直接在官网下载anaconda,我下载的是P

  • win10系统下Anaconda3安装配置方法图文教程

    本文主要介绍在 windows 10 系统中安装 Anaconda3 的详细过程. 下载 Anaconda 官网下载地址 目前最新版本是 python 3.6,默认下载也是 Python 3.6, 我使用的是 Python 3.5 版本,这里使用Anaconda3-4.2.0-Windows-x86_64.exe版本,因为它默认使用的是 Python 3.5,官方下载地址. 当然,也可以在官网下载最新版本的 Anaconda3,然后根据自己需要设置成 python 3.5. 安装 安装较为简单,

  • 利用Anaconda简单安装scrapy框架的方法

    引言:使用pip install 来安装scrapy需要安装大量的依赖库,这里我使用了Anaconda来安装scrapy,安装时只需要一条语句:conda install scrapy即可 步骤1:安装Anaconda,在cmd窗口输入:conda install scrapy ,输入y回车表示允许安装依赖库 步骤2:测试scrapy是否安装成功,在dos窗口输入scrapy回车 步骤3:在Pycharm-->file-->settings-->搜索project interpreter

  • Windows下anaconda安装第三方包的方法小结(tensorflow、gensim为例)

    anaconda 集成了很多科学计算中所需要的包,如numpy,scipy等等,具体查看anaconda中已经预先安装配置好的包有哪些,可以通过cmd命令,输入conda list 查看,如下图所示: 但是,因为实际需求,我们会需要导入列表中没有的第三方包,如gemsim,在anaconda中,我们可以参考以下步骤安装所需要的第三方包:         1.启动anaconda 命令窗口: 开始 > 所有程序 > anaconda >anaconda prompt    2.安装gens

  • Python3中在Anaconda环境下安装basemap包

    Basemap是matplotlib子包,也是python中最常用.最方便的地理数据可视化工具之一. 在中端输入pip list先查看是否有jupyter,一般安装了Anaconda都会有. win+R 打开命令提示符窗口,cd命令将当前目录设置为下载文件存放的文件夹(我放在桌面)后点回车键. basemap下载地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/ (1) 在终端输入python可以查看自己需要哪个版本的. (2)basemap 将文件下载

  • Anaconda 离线安装 python 包的操作方法

    因为有时直接使用pip install在线安装 Python 库下载速度非常慢,所以这里介绍使用 Anaconda 离线安装 Python 库的方法. 这里以安装 pyspark 这个库为例,因为这个库大约有180M,我这里测试的在线安装大约需要用二十多个小时,之后使用离线安装的方法,全程大约用时10分钟. 查看所需的 Python 包 如果不知道具体使用什么版本的 Python 库,可以先尝试在 Aanconda Prompt 中直接使用 pip install pyspark 我这里根据提示

  • Anaconda下安装mysql-python的包实例

    Anaconda下需要使用Python与MySQL数据库进行交互,所以需要import一个mysql-python的包, 但是在ipython中引用的时候发现Anaconda并没有包含该包,因此需要自己对该依赖包进行安装. 打开windows下的cmd,载命令行输入conda install mysql-python,回车. 其他的依赖包也可以使用该方法添加. 以上这篇Anaconda下安装mysql-python的包实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我

  • 使用anaconda的pip安装第三方python包的操作步骤

    相比于原生的python开发核心包,Anaconda已经集成了许多的第三方库,但是这在实际应用中是远远不够的,因此我们需要手动安装第三方库 使用pip可以快速的安装这些库 启动anaconda命令窗口: 开始> 所有程序> Anaconda Command Prompt 输入pip,可以查看pip指令的用法和相关的提示信息 pip install buitwith,可以开始安装buitwith库 以上这篇使用anaconda的pip安装第三方python包的操作步骤就是小编分享给大家的全部内容

  • windows下Anaconda的安装与配置正解(Anaconda入门教程) 原创

    一.下载anaconda 第一步当然是下载anaconda了,官方网站的下载需要用迅雷才能快点,或者直接到清华大学镜像站下载.当然这里推荐我们下载,下载地址都整理好了 下载地址: http://www.jb51.net/softs/556392.html 清华大学提供了镜像,从这个镜像下载速度很快,地址: https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/ 选择相应的版本进行下载就好 下载过程中除了安装位置外,还有两个需要确认的地方. 第一个勾

  • 致Python初学者 Anaconda入门使用指南完整版

    打算学习 Python 来做数据分析的你,是不是在开始时就遇到各种麻烦呢? 到底该装 Python2 呢还是 Python3 ? 为什么安装 Python 时总是出错? 怎么安装工具包呢? 为什么提示说在安装这个工具前必须先安装一堆其他不明所以的工具? 相信大多数 Python 的初学者们都曾为环境问题而头疼不已,但你并不孤独,大家都是这么折腾过来的.为了在入门时少走弯路,并且让高涨的积极性不至于太受打击,这里推荐使用 Anaconda 来管理你的安装环境和各种工具包. 本文介绍了Anacond

  • 详解PyCharm配置Anaconda的艰难心路历程

    在安装好pycharm后,想着anaconda中的类库会比较全,就想着将anaconda配置到pycharm中,这样可以避免以后下载各种类库. 第一步就是要下载并安装anaconda,在安装的过程中历经困难,每次都在最后一步安装失败,报错信息为failed to create anacoda menue?网上也给出了各种解决方案,但是上天好像没有那么眷顾我,每种解决方案都不适用于我,方法如下: (1)使用默认安装路径,不适用自定义路径 (2)安装路径中不能包含中文字符 (3)系统相对路径过长,修

  • Python学习之Anaconda的使用与配置方法

    俗话说'人生苦短,我有Python',但是如果初学Python的过程中碰到包和Python版本的问题估计会让你再苦一会,我在学习Python的爬虫框架中看到看到了anaconda的介绍,简直是相见恨晚啊,我觉的每个Python的学习网站上首先都应该使用anaconda来进行教程,因为在实践的过程中光环境的各种报错就能消磨掉你所有的学习兴趣! 下面简单的介绍下anaconda,它是将Python版本和许多常用的package打包直接来使用的Python发行版,支持linux.mac.windows

  • 在python中安装basemap的教程

    1. 确保python环境安装完毕且已配置好环境变量 2. 安装geos: pip install geos 3. 下载.whl文件: (1)pyproj‑1.9.5.1‑cp36‑cp36m‑win_amd64.whl (2)basemap‑1.1.0‑cp36‑cp36m‑win_amd64.whl 注,这两个文件均可在 https://www.lfd.uci.edu/~gohlke/pythonlibs/ 找到, 需要特别注意的是版本号一定要对应(比如多少位机器,什么版本的python)

随机推荐