浅谈python可视化包Bokeh

本文研究的主要是python可视化包Bokeh的相关内容,具体如下。

问题:需要把pandas的数据绘图并通过网页显示,matplotlib需要先保存图像,不合适。

解决:在网上搜了一下,找到一篇介绍文章 python可视化工具概述,其中介绍了几个python包,总结如下:

  • Pandas对于简单绘图,可以随手用,但你需要学习定制matplotlib。
  • Seaborn可以支持更多复杂的可视化方式,但仍然需要matplotlib知识,上色功能是个亮点。
  • ggplot有很多功能,但还需要发展。
  • bokeh是一个有效的工具,如果你想建立一个可视化的服务器,这几乎是杀鸡用牛刀的事情。
  • pygal独立运行,可用来生成交互的svg图表和png文件。它没有基于matploglib的方案那样灵活。
  • Plotly可生成大多数可交互图表。你可以保存为离线文件,然后建立丰富的基于web的可视化。
  • 感觉Bokeh比较合适,就认真研究了一下,找到一篇简单介绍Bokeh使用的文章 交互式数据可视化,在Python中用Bokeh实现,Bokeh可以直接跟Jinja2集成,将生成的图像在网页中直接显示,正满足需求。大体流程如下:

1、生成图像

p = figure(title = code, plot_width=1024, plot_height=600, x_axis_type='datetime')
p.line(x=trd_df['date'], y=trd_df['close'])
script, div = components(p) 

2、在flask中传递参数

return render_template('show_stock.html',
bk_js = bokeh.resources.INLINE.render_js(),
bk_css = bokeh.resources.INLINE.render_css(),
p_script = script, div = p_div)

3、在html中调用显示

<!doctype html>
<html lang="en">
<head>
  <meta charset='utf-8' />
  <meta http-equiv='content-type' content='text/html; charset=utf-8' /> 

  <title>Embed Demo</title> 

  {{ js_resources|indent(4)|safe }} 

  {{ css_resources|indent(4)|safe }} 

  {{ p_script|indent(4)|safe }} 

</head>
<body> 

  {{ p_div|indent(4)|safe }} 

</body>
</html> 

总结

以上就是本文关于浅谈python可视化包Bokeh的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

您可能感兴趣的文章:

  • VTK与Python实现机械臂三维模型可视化详解
  • Python的地形三维可视化Matplotlib和gdal使用实例
  • Python数据可视化编程通过Matplotlib创建散点图代码示例
  • Python数据可视化正态分布简单分析及实现代码
  • Python金融数据可视化汇总
  • 基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解
  • Python 绘图和可视化详细介绍
  • 举例讲解Python的Tornado框架实现数据可视化的教程
(0)

相关推荐

  • Python数据可视化正态分布简单分析及实现代码

    Python说来简单也简单,但是也不简单,尤其是再跟高数结合起来的时候... 正态分布(Normaldistribution),也称"常态分布",又名高斯分布(Gaussiandistribution),最早由A.棣莫弗在求二项分布的渐近公式中得到.C.F.高斯在研究测量误差时从另一个角度导出了它.P.S.拉普拉斯和高斯研究了它的性质.是一个在数学.物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力. 正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人

  • Python数据可视化编程通过Matplotlib创建散点图代码示例

    Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D方面).该项目是由JohnHunter于2002年启动的,其目的是为Python构建一个MATLAB式的绘图接口.如果结合PythonIDE使用比如PyCharm,matplotlib还具有诸如缩放和平移等交互功能.它不仅支持各种操作系统上许多不同的GUI后端,而且还能将图片导出为各种常见的矢量(vector)和光栅(raster)图:PDF.SVG.JPG.PNG.BMP.GIF等.此外,matp

  • 基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解

    Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在画布中创建一个绘图区.在绘图区上画几条线.给图像添加文字说明等.下面我们就通过实例代码来领略一下他的魅力. import matplotlib.pyplot as plt plt.plot([1,2,3,4]) plt.ylabel('some numbers') plt.show() 上图是我们通

  • Python的地形三维可视化Matplotlib和gdal使用实例

    我是以Python开门的,我还是觉得Python也可以进行地形三维可视化,当然这里需要借助第三方库,so,我就来介绍:Python一个很重要可视化插件,Matplotlib. Matplotlib是Python最著名的绘图库,它提供了一整套友好的命令,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中.你会发现Matplotlib和matlab相似,但是你知道matlab强大是很强大,但是安装包就有7G,一下就让我失去玩弄他的兴趣. Matplotlib的二维图形非

  • VTK与Python实现机械臂三维模型可视化详解

    三维可视化系统的建立依赖于三维图形平台, 如 OpenGL.VTK.OGRE.OSG等, 传统的方法多采用OpenGL进行底层编程,即对其特有的函数进行定量操作, 需要开发人员熟悉相关函数, 从而造成了开发难度大. 周期长等问题.VTK. ORGE.OSG等平台使用封装更好的函数简化了开发过程.下面将使用Python与VTK进行机器人上位机监控界面的快速原型开发. 完整的上位机程序需要有三维显示模块.机器人信息监测模块(位置/角度/速度/电量/温度/错误信息...).通信模块(串口/USB/WI

  • 举例讲解Python的Tornado框架实现数据可视化的教程

    所用拓展模块     xlrd: Python语言中,读取Excel的扩展工具.可以实现指定表单.指定单元格的读取.     使用前须安装.     下载地址:https://pypi.python.org/pypi/xlrd     解压后cd到解压目录,执行 python setup.py install 即可 datetime: Python内置用于操作日期时间的模块 拟实现功能模块 读xls文件并录入数据库 根据年.月.日三个参数获取当天的值班情况 饼状图(当天完成值班任务人数/当天未完

  • Python 绘图和可视化详细介绍

    Python之绘图和可视化 1. 启用matplotlib 最常用的Pylab模式的IPython(IPython --pylab) 2. matplotlib的图像都位于Figure对象中. 可以使用plt.figure创建一个新的Figure,不能通过空Figure绘图,必须用add_subplot创建一个或多个subplot axes[0,1]可以通过sharex和sharey指定subplot应该具有相同的X轴或Y轴. 利用Figure的subplots_adjust方法可以修改间距,w

  • Python金融数据可视化汇总

    通过本篇内容给大家介绍一下Python实现金融数据可视化中两列数据的提取.分别画.双坐标轴.双图.两种不同的图等代码写法和思路总结. import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt np.random.seed(2000) y = np.random.standard_normal((20,2)) # print(y) ''' 不同的求和 print(y.cumsum()) print(y.s

  • 浅谈python可视化包Bokeh

    本文研究的主要是python可视化包Bokeh的相关内容,具体如下. 问题:需要把pandas的数据绘图并通过网页显示,matplotlib需要先保存图像,不合适. 解决:在网上搜了一下,找到一篇介绍文章 python可视化工具概述,其中介绍了几个python包,总结如下: Pandas对于简单绘图,可以随手用,但你需要学习定制matplotlib. Seaborn可以支持更多复杂的可视化方式,但仍然需要matplotlib知识,上色功能是个亮点. ggplot有很多功能,但还需要发展. bok

  • 浅谈Python中用datetime包进行对时间的一些操作

    1. 计算给出两个时间之间的时间差 import datetime as dt # current time cur_time = dt.datetime.today() # one day pre_time = dt.date(2016, 5, 20) # eg: 2016.5.20 delta = cur_time - pre_time # if you want to get discrepancy in days print delta.days # if you want to get

  • 浅谈Python脚本开头及导包注释自动添加方法

    1.开头:#!/usr/bin/python和# -*- coding: utf-8 -*-的作用 – 指定 #!/usr/bin/python 是用来说明脚本语言是python的 是要用/usr/bin下面的程序(工具)python,这个解释器,来解释python脚本,来运行python脚本的. #!/usr/bin/python:是告诉操作系统执行这个脚本的时候,调用 /usr/bin 下的 python 解释器: #!/usr/bin/env python(推荐):这种用法是为了防止操作系

  • 浅谈Python中文件夹和python package包的区别

    pycharm右键新建时会有目录(文件夹)和python package两个选项,这两个到底有什么不同呢 1.原来在python模块的每一个包中,都有一个__init__.py文件(这个文件定义了包的属性和方法)然后是一些模块文件和子目录,假如子目录中也有__init__.py那么它就是这个包的子包了. 当你将一个包作为模块导入(比如从 xml导入 dom)的时候,实际上导入了它的__init__.py 文件. 2.而目录跟包唯一不同的就是没有__init__.py 文件,一个包是一个带有特殊文

  • 浅谈python中copy和deepcopy中的区别

    在下是个编程爱好者,最近将魔爪伸向了Python编程.....遇到copy和deepcopy感到很困惑,现在针对这两个方法进行区分,一种是浅复制(copy),一种是深度复制(deepcopy). 首先说一下deepcopy,所谓的深度复制,在这里我理解的是完全复制然后变成一个新的对象,复制的对象和被复制的对象没有任何关系,彼此之间无论怎么改变都相互不影响. 然后说一下copy,在这里我分为两类来说,一种是字典数据类型的copy函数,一种是copy包的copy函数. 一.字典数据类型的copy函数

  • 浅谈Python基础之I/O模型

    一.I/O模型 IO在计算机中指Input/Output,也就是输入和输出.由于程序和运行时数据是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘.网络等,就需要IO接口. 同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别? 这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blockin

  • 浅谈python numpy中nonzero()的用法

    nonzero函数返回非零元素的目录. 返回值为元组, 两个值分别为两个维度, 包含了相应维度上非零元素的目录值. import numpy as np A = np.mat([[0,1,2,3,4,3,2,1,0],[0,1,2,3,4,5,6,7,0]]) x = A.nonzero() #取出矩阵中的非零元素的坐标 print x #输出是一个元组,两个维度.一一对应, #返回非零元素在矩阵中的位置,前一个列表存放非零行坐标,后一个列表存放非零元素列坐标 #(array([0, 0, 0,

  • 浅谈python requests 的put, post 请求参数的问题

    post, put请求的参数有两种形式 一种是把参数拼接在url中 对应postman 第二种是把参数放在body中 对应postman 在Python requests 库中 一般在的资料都会介绍 post,put请求的参数 用data 这种情况下参数会放在body中 但是有些接口参数通过body传入获取不到只能获取到URL中的参数 我们就需要用到 类似于get请求中的 params 传入参数 requests.post(url=url, params=data, verify=False,

  • 浅谈Python中的模块

    模块 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式.在Python中,一个.py文件就称之为一个模块(Module). 使用模块有什么好处? 当一个模块编写完毕,就可以被其他地方引用.我们在编写程序的时候,也经常引用其他模块,包括Python内置的模块和来自第三方的模块. 模块还可以避免函数名和变量名冲突.相同名字的函数和变量完全可以分别存在不同的模块中.但是也要注意,尽量不要与内置函数名字冲突. 如果不

  • 浅谈Python 命令行参数argparse写入图片路径操作

    什么是命令行参数? 命令行参数是在运行时给予程序/脚本的标志.它们包含我们程序的附加信息,以便它可以执行. 并非所有程序都有命令行参数,因为并非所有程序都需要它们. 为什么我们使用命令行参数? 如上所述,命令行参数在运行时为程序提供附加信息. 这允许我们在不改变代码的情况下动态地为我们的程序提供不同的输入 . 您可以绘制命令行参数类似于函数参数的类比.如果你知道如何在各种编程语言中声明和调用函数,那么当你发现如何使用命令行参数时,你会立刻感到宾至如归. 鉴于这是计算机视觉和图像处理博客,您在这里

随机推荐