python绘制直方图和密度图的实例
对于pandas的dataframe,绘制直方图方法如下:
//pdf是pandas的dataframe, delta_time是其中一列 //xlim是x轴的范围,bins是分桶个数 pdf.delta_time.plot(kind='hist', xlim=(-50,300), bins=500)
对于pandas的dataframe,绘制概率密度图方法如下:
//pdf是pandas的dataframe, delta_time是其中一列 pdf.delta_time.dropna().plot(kind='kde', xlim=(-50,300))
以上这篇python绘制直方图和密度图的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
python OpenCV学习笔记之绘制直方图的方法
本篇文章主要介绍了python OpenCV学习笔记之绘制直方图的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考.一起跟随小编过来看看吧 官方文档 – https://docs.opencv.org/3.4.0/d1/db7/tutorial_py_histogram_begins.html 直方图会让你对图像的强度分布有一个全面的认识.它是一个在x轴上带有像素值(从0到255,但不总是),在y轴上的图像中对应的像素数量的图. 这只是理解图像的另一种方式.通过观察图像的直方图,你可以直
-
opencv python统计及绘制直方图的方法
灰度直方图概括了图像的灰度级信息,简单的来说就是每个灰度级图像中的像素个数以及占有率,创建直方图无外乎两个步骤,统计直方图数据,再用绘图库绘制直方图. 统计直方图数据 首先要稍微理解一些与函数相关的术语,方便理解其在python3库中的应用和处理 BINS: 在上面的直方图当中,如果像素值是0到255,则需要256个值来显示直 方图.但是,如果不需要知道每个像素值的像素数目,只想知道两个像素值之间的像素点数目怎么办?例如,想知道像素值在0到15之间的像素点数目,然后是16到31...240到25
-
Python使用pylab库实现绘制直方图功能示例
本文实例讲述了Python使用pylab库实现绘制直方图功能.分享给大家供大家参考,具体如下: Python直方图 #!/usr/bin/python # -*- coding: utf-8 -*- import pylab as pl dataFile = "dataList.txt" tempList = [] with open(dataFile,"r") as data: for everLine in data: arrEverLine = [float(
-
教你利用Python玩转histogram直方图的五种方法
直方图 直方图是一个可以快速展示数据概率分布的工具,直观易于理解,并深受数据爱好者的喜爱.大家平时可能见到最多就是 matplotlib,seaborn 等高级封装的库包,类似以下这样的绘图. 本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结): 纯Python实现直方图,不使用任何第三方库 使用Numpy来创建直方图总结数据 使用matplotlib,pandas,seaborn绘制直方图 下面,我们来逐一介绍每种方法的来龙去脉. 纯Py
-
Python基于matplotlib绘制栈式直方图的方法示例
本文实例讲述了Python基于matplotlib绘制栈式直方图的方法.分享给大家供大家参考,具体如下: 平时我们只对一组数据做直方图统计,这样我们只要直接画直方图就可以了. 但有时候我们同时画多组数据的直方图(比如说我大一到大四跑大学城内环的用时的分布),大一到大四用不同颜色的直方图,显示在一张图上,这样会很直观. #!/usr/bin/env python # -*- coding: utf-8 -*- #http://www.jb51.net/article/100363.htm # nu
-
python绘制直方图和密度图的实例
对于pandas的dataframe,绘制直方图方法如下: //pdf是pandas的dataframe, delta_time是其中一列 //xlim是x轴的范围,bins是分桶个数 pdf.delta_time.plot(kind='hist', xlim=(-50,300), bins=500) 对于pandas的dataframe,绘制概率密度图方法如下: //pdf是pandas的dataframe, delta_time是其中一列 pdf.delta_time.dropna().pl
-
Python绘制散点密度图的三种方式详解
目录 方式一 方式二 方式三 方式一 import matplotlib.pyplot as plt import numpy as np from scipy.stats import gaussian_kde from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib import rcParams config = {"font.family":'Times New Roman',"fo
-
python使用seaborn绘图直方图displot,密度图,散点图
目录 一.直方图distplot() 二.密度图 2.1 单个样本数据分布密度图 一.直方图distplot() import numpy as np import seaborn as sns import matplotlib.pyplot as plt import matplotlib import pandas as pd fig = plt.figure(figsize=(12, 5)) ax1 = plt.subplot(121) rs = np.random.RandomStat
-
Python绘制全球疫情变化地图的实例代码
目前全球疫情仍然比较严重,为了能清晰地看到疫情爆发以来至现在全球疫情的变化趋势,我绘制了一张疫情变化地图. 废话不多说,先上图 下面就来重点介绍下上面这张图的绘制过程,主要分为以下三个步骤: 数据收集 数据处理 画图 下面一个一个来说. 数据收集 这是万里长城的第一步,俗话说"巧妇难为无米之炊",既然是变化图,当然需要每个国家.每天的现有确诊病例数.好在现在各大网站都有疫情相关的专题页,我们可以直接抓数据.以网易为例 我们选择 XHR,重新刷新下网页可以看到有几个接口,其中 list-
-
Matlab绘制散点密度图的教程详解
目录 效果 1工具函数完整代码 2参数说明 3使用方式 3.1散点赋色 3.2等高线图 3.3带直方图的散点图 3.4带直方图的等高线图 4使用方式扩展–与ggplot修饰器联动 效果 原理也很简单,通过matlab自带的ksdensity获得网格每一点密度,通过密度拟合曲面,再计算每个数据点对应的概率,并将概率映射到颜色即可为了怕大家找不到函数这次工具函数放到最前面 1工具函数完整代码 function [CData,h,XMesh,YMesh,ZMesh,colorList]=density
-
python绘制散点图和折线图的方法
本文实例为大家分享了python绘制散点图和折线图的具体代码,供大家参考,具体内容如下 #散点图,一般和相关分析.回归分析结合使用 import pandas import matplotlib import matplotlib.pyplot as plt plot_circle=pandas.read_csv('D://Python projects//reference data//6.1//data.csv') #定义主题颜色 maincolor=(47/256,82/256,141
-
python绘制直方图的方法
本文实例为大家分享了python绘制直方图的具体代码,供大家参考,具体内容如下 用两列数据绘制直方图 #coding=gbk import xlwings as xw import pandas as pd import matplotlib.pyplot as plt #pd.set_option('display.max_columns', None) #解决表格多列时中间省略显示问题 #pd.set_option('display.max_rows', None) #解决表格多行
-
使用python绘制3维正态分布图的方法
今天使用python画了几个好玩的3D展示图,现在分享给大家. 先贴上图片 使用的python工具包为: from matplotlib import pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D 在贴代码之前,有必要从整体上了解这些图是如何画出来的.可以把上面每一个3D图片理解成一个长方体.输入数据是三维的,x轴y轴和z轴.在第三个图片里面有x.y和z坐标的标识.在第三张图片中,我们可以理解为,
-
Python数据可视化:饼状图的实例讲解
使用python实现论文里面的饼状图: 原图: python代码实现: # # 饼状图 # plot.figure(figsize=(8,8)) labels = [u'Canteen', u'Supermarket', u'Dorm', u'Others'] sizes = [73, 21, 4, 2] colors = ['red', 'yellow', 'blue', 'green'] explode = (0.05, 0, 0, 0) patches, l_text, p_text =
-
使用Python绘制空气质量日历图
目录 前言 数据 calmap 最后 前言 在github中经常可以看到下面的日历图,可以用来表示每一天在github上的活跃程度. 类似的方法也可以用到空气质量的可视化方式中来,只要有每天的空气质量指数就可以. 数据 我这里使用的是2020年北京市各个监测站点的空气质量观测数据,原始数据包含PM2.5,PM10,AQI指数,这里选择AQI作为示例. 这里对原始数据做了简单处理,具体过程不赘述,感兴趣的话也可以看文末获取方式. 处理后的数据形式如下: calmap 绘制日历图可以用calmap库
随机推荐
- 分享如何在VB中调用VC编写的DLL
- 《CSS3实战》笔记--渐变设计(三)
- 如何测试字符串的长度?
- 跨服务器查询导入数据的sql语句
- 利用JQuery和JS实现奇偶行背景颜色自定义效果
- windows2003一句话开3389的vbs代码
- 利用java实现二维码和背景图的合并
- oracle 9i使用闪回查询恢复数据库误删问题
- setTimeout函数的神奇使用
- Asp.Net实现的通用分页函数
- PHP-FPM实现性能优化
- 基于PHP实现短信验证码接口(容联运通讯)
- C#给Excel添加水印实例详解
- C# WCF简单入门图文教程(VS2010版)
- ajax视频课件 在线观看地址
- 深入理解JavaScript系列(27):设计模式之建造者模式详解
- JQquery的一些使用心得分享
- C#中把字符串String转换为整型Int的小例子
- SQLSERVER中得到执行计划的两种方式
- 在sql查询中使用表变量