详解android 人脸检测你一定会遇到的坑

笔者今年做了一个和人脸有关的android产品,主要是获取摄像头返回的预览数据流,判断该数据流是否包含了人脸,有人脸时显示摄像头预览框,无人脸时摄像头预览框隐藏,看上去这个功能并不复杂,其实在开发过程中,遇到的问题也不多,全部都处理了,在正式推出前,这个产品在公司内部也测试了几个月,也没发现bug,但最近实施人员,在客户公司做实施时,反馈回来各种问题,这些问题有部分是程序bug,也有一部分是和硬件有关,因为测试环境有限,笔者无法对各种型号,各个厂家的硬件进行测试,这篇文章主要是记录,摄像头给我们带来的一些坑,分享给涉及到人脸开发的朋友,让大家少走弯路。

一:概述

Android SDK 中支持人脸检测,它提供了一个直接在位图上进行人脸检测的方法,这个 API 是android.media.FaceDetector,源文件路径是:

frameworks/base/media/java/android/media/FaceDetector.java

调用 findFaces 方法就可进行人脸检测,该方法返回检测到的人脸总数,并且会将每个”人脸”的信息保存在FaceDetector.Face 的数组中。每个 Face 都包含下面几点信息:

  1. 该 Face 为人脸的可信度.取值范围是 0~1,大于 0.3 则表明可信度较高。
  2. 双眼之间的距离
  3. 双眼中点的 x,y 坐标
  4. 脸部的欧拉角度,可用于判断抬头,侧脸的角度等。

识别流程是这样的:

1. 读取一张图片至 Bitmap,且该 Bitmap 必须是 565 格式。

2. 调用 findFaces 方法分析 Bitmap(注意待分析的 Bitmap 宽度必须是偶数),将探测到的人脸数据存储在一个FaceDetector.Face 数组中,并返回检测到的人脸总数。Android SDK 中的 FaceDetector 介绍

android有原生的api做人脸检测,通过android.media.FaceDetector来检测bitmap是否包含人脸,android.media.FaceDetector.Face来检测人脸位置信息,我们需要在activity中实现Carema.PreviewCallBack接口,该接口有一个onPreviewFrame方法,这个方法返回摄像头实时图像的数据流,由于这个方法返回的数据流时nv21格式,我们需要转换bitmap才能进行人脸检测,转换过程如下:byte[] --> YuvImage --> ByteArrayOutputStream --> byte[] -->  bitmap ,具体转换的代码如下:

Camera.Size size = mtCamera.getParameters().getPreviewSize();
YuvImage yuvImage = new YuvImage(mData, ImageFormat.NV21, size.width, size.height, null);
yuvImage.compressToJpeg(new Rect(0, 0, size.width, size.height), 100, mBitmapOutput);
options.inPreferredConfig = Bitmap.Config.RGB_565;
bitmap = BitmapFactory.decodeByteArray(mBitmapOutput.toByteArray(), 0, mBitmapOutput.toByteArray().length, options);
mBitmapOutput.reset();
bitmap = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(), bitmap.getHeight(), mMatrix, false);

通过上面的转换,我们已经得到了人脸检测的bitmap,此时只需要进行人脸检测就ok了,代码如下:

detector = new FaceDetector(source.getWidth(),source.getHeight(), maxFaceNum);
Face[] faces = new Face[maxFaceNum];
detector.findFaces(source, faces);

代码基本上就哪么多,由于受到硬件的影响,上面的代码有很多地雷。

二:人脸检测常见问题

产品上线后,主要问题有,人站在摄像头面前,app无法识别人脸,软件运行性能也会下降,出现严重卡顿等问题,当前我比较郁闷,明明在测试环境都运行几个月了,都没有出现这些问题,正式实施的时候,问题不断,通过近两个月的整理,主要问题有以下几个。

2.1   无法识别人脸

1):相机角度问题

由于我在测试的时候,摄像头图像是垂直的,没有任何问题,但正式使用时,摄像头来自不同商家,导致摄像头图像是水平的了,如下图:

  

图像角度都不对了,当然无法识别人脸了,此时我们需要得到摄像头的默认旋转的角度,再作处理,特别声明:setDisplayOrientation() 这个方法是逆时针旋转,代码如下:

public void setCameraDisplayOrientation (Activity activity, int cameraId, android.hardware.Camera camera) {
  android.hardware.Camera.CameraInfo info = new android.hardware.Camera.CameraInfo();
  android.hardware.Camera.getCameraInfo (cameraId , info);
  int rotation = activity.getWindowManager ().getDefaultDisplay ().getRotation ();
  int degrees = 0;
  switch (rotation) {
   case Surface.ROTATION_0:
    degrees = 0;
    break;
   case Surface.ROTATION_90:
    degrees = 90;
    break;
   case Surface.ROTATION_180:
    degrees = 180;
    break;
   case Surface.ROTATION_270:
    degrees = 270;
    break;
  }
  int result;
  if (info.facing == Camera.CameraInfo.CAMERA_FACING_FRONT) {
   result = (info.orientation + degrees) % 360;
   result = (360 - result) % 360; // compensate the mirror
  } else {
   // back-facing
   result = ( info.orientation - degrees + 360) % 360;
  }
  mOrienta = result;//该值有其它用途
  camera.setDisplayOrientation (result);
 }

2):相机设置旋转后,预览图片和相机返回实时流角度问题

这个坑太恶心了,当我把相机角度旋转后,把app打包发一个给同事,结果同事告诉我,还是不行,还好在公司借到一个锐士达1080p的摄像头,然后我把onPreviewFrame返回的流画到imageView,发现返回的图像,和预览的图像,根本不一样,我勒个去,虽然预览图像旋转了,我们还需要对onPreviewFrame返回的流进行处理,这个坑也让我比较无语,害我找了好久。虽然说解决的代码只有简短的几句,但找出原因过程只有自己能体会,然后我使用Matrix来旋转onPreviewFrame返回的流,关于Matrix,完全是参考android Matrix详细,这篇文章写得非常好,然而matrix的postRotate是顺时针旋转,和camera.setDisplayOrientation()刚好相反,我勒个去,这两个难兄难弟太不让人省心,一个顺时针,一个逆时针,超级无语,修改后的代码如下。

//mOrienta来源于setCameraDisplayOrientation
mMatrix = new Matrix();
    switch (mOrienta){
     case 90:
      mMatrix.postRotate(270);
      break;
     case 270:
      mMatrix.postRotate(90);
      break;
     default:
      mMatrix.postRotate(mOrienta);
      break;
    }

2.2   720p摄像头和1080p摄像头涉及到的问题

1):获取摄像头支持预览尺寸遇到的问题

初始化相机时,我们需要设置摄像头支持的预览尺寸,如果不是相机支持的尺寸,会出现异常,根据项目需要,本地环境我直接指定一个下标,然后硬件变化后,这个值也跟着变了,如下图:

      

此处根据实际情况获取,可以计算每一个尺寸的面积,通过一个基础面积获取适应的预览尺寸。具体代码就不帖了,只需要清楚有这一个坑就ok了。

2):获取预览侦宽高大小带来的问题

如果程序的lock,和线程问题没处理好,性能问题显而易见。

      

如果只是简单的识别人脸,我们可以通过压缩图片的方法来解决这个问题。

BitmapFactory.Options options = new BitmapFactory.Options();
options.inSampleSize =2;
options.inPreferredConfig = Bitmap.Config.RGB_565;
bitmap = BitmapFactory.decodeByteArray(mBitmapOutput.toByteArray(), 0, mBitmapOutput.toByteArray().length, options);

3):摄像头返回的流频率过快,导致人脸识别处理速度根不上的解决办法

最初软件运行的时候,运行一段时间,app直接崩溃了,最后发现是,onPreviewFrame返回的流太快,网上说可以在启动相机时,设置流的频率,常见设置的代码

Camera.Parameters parameters = mCamera.getParameters();
parameters.setPreviewFrameRate(3);//设置每秒3帧,没有效果

然而这样设置后,完全没有用,如图:

处理这个问题并不是很复杂,只是判断一个两次处理流的时候,大于300毫秒(具体时间,根据需求变动)

 public void onPreviewFrame(byte[] data, Camera camera) {
  Logger.i(TAG+"收到相机回调:onpreviewframe()"+index);
  if(data!=null&&data.length>0&&System.currentTimeMillis()-time>200){
   time=System.currentTimeMillis();
   mFaceHandle.post(new FaceThread(data,camera,(++index)));
  }
 }

2.3 刷脸的人员走开后,屏幕仍然显示和人脸相关信息

通过以上描述我们知道,相机预览图尺寸过大,导致刷脸人员走开几秒钟内,android设备屏,仍然显示和人脸有关的信息,因为onPreviewFrame频率较快,而处理人脸的时间过长,导致人脸对列越来越大,所以人走开后,屏才会显示相关信息,这里需要控制,onPreviewFrame处理人脸的频率大于,以及提升人脸识别的时间.

完整demo 下载地址:https://github.com/jlq023/democamera

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • JavaCV实现人脸检测功能
  • opencv 做人脸识别 opencv 人脸匹配分析
  • OpenCV实现人脸识别
  • OpenCV实现人脸检测
  • opencv实现图片与视频中人脸检测功能
  • 基于openCV实现人脸检测
  • Android中的人脸检测的示例代码(静态和动态)
  • Android动态人脸检测的示例代码(脸数可调)
  • Android camera实时预览 实时处理,人脸识别示例
  • Java+opencv3.2.0实现人脸检测功能
(0)

相关推荐

  • Java+opencv3.2.0实现人脸检测功能

    说到人脸检测,首先要了解Haar特征分类器.Haar特征分类器说白了就是一个个的xml文件,不同的xml里面描述人体各个部位的特征值,比如人脸.眼睛等等.OpenCV3.2.0中提供了如下特征文件: haarcascade_eye.xml haarcascade_eye_tree_eyeglasses.xml haarcascade_frontalcatface.xml haarcascade_frontalcatface_extended.xml haarcascade_frontalface

  • opencv实现图片与视频中人脸检测功能

    本文实例为大家分享了opencv实现人脸检测功能的具体代码,供大家参考,具体内容如下 第一章:反思与总结 上一篇博客我相信自己将人脸检测中的AdaBoost算法解释的非常清晰了,以及如何训练人脸检测的强分类器:人脸检测中AdaBoost算法详解.事后,自我感觉对这个人脸检测还是不够具体,所以自己抽了一下午的时间用opencv实现图片与视频中的人脸检测,下面是我用vs2013加opencv4.9来实现的.做一下声明,我的代码是参考OpenCV实现人脸检测的一个博客写的,非常感谢这位博主,我学到了很

  • 基于openCV实现人脸检测

    openCV的人脸识别主要通过Haar分类器实现,当然,这是在已有训练数据的基础上.openCV安装在 opencv/opencv/sources/data/haarcascades_cuda(或haarcascades)中存在预先训练好的物体检测器(xml格式),包括正脸.侧脸.眼睛.微笑.上半身.下半身.全身等. openCV的的Haar分类器是一个监督分类器,首先对图像进行直方图均衡化并归一化到同样大小,然后标记里面是否包含要监测的物体.它首先由Paul Viola和Michael Jon

  • Android中的人脸检测的示例代码(静态和动态)

    (1)背景. Google 于2006年8月收购Neven Vision 公司 (该公司拥有10多项应用于移动设备领域的图像识别的专利),以此获得了图像识别的技术,并加入到android中.Android 中的人脸识别技术,用到的底层库:android/external/neven/,framework 层:frameworks/base/media/java/android/media/FaceDetector.java. Java 层接口的限制:A,只能接受Bitmap 格式的数据:B,只能

  • JavaCV实现人脸检测功能

    本文实例为大家分享了JavaCV实现人脸检测功能的具体代码,供大家参考,具体内容如下 /* * Copyright (C) 2010,2011,2012 Samuel Audet * * FacePreview - A fusion of OpenCV's facedetect and Android's CameraPreview samples, * with JavaCV + JavaCPP as the glue in between. * * This file was based o

  • OpenCV实现人脸检测

    前段日子,写了个人脸检测的小程序,可以检测标记图片.视频.摄像头中的人脸.效果还行吧,用的是opencv提供人脸库.至于具体的人脸检测原理,找资料去啃吧. 环境:VS2013+OPENCV2.4.10+Win8.1 一.基于对话框的MFC 首先,新建一个基于对话框的MFC应用程序,命名为myFaceDetect(取消"安全开发周期(SDL)检查"勾选,我自己习惯取消这个). 放置Button,设置Button的ID和Caption. 图片按钮--ID:IDC_FACEDETECT 视频

  • OpenCV实现人脸识别

    主要有以下步骤: 1.人脸检测 2.人脸预处理 3.从收集的人脸训练机器学习算法 4.人脸识别 5.收尾工作 人脸检测算法: 基于Haar的脸部检测器的基本思想是,对于面部正面大部分区域而言,会有眼睛所在区域应该比前额和脸颊更暗,嘴巴应该比脸颊更暗等情形.它通常执行大约20个这样的比较来决定所检测的对象是否为人脸,实际上经常会做上千次. 基于LBP的人脸检测器基本思想与基于Haar的人脸检测器类似,但它比较的是像素亮度直方图,例如,边缘.角落和平坦区域的直方图. 这两种人脸检测器可通过训练大的图

  • Android camera实时预览 实时处理,人脸识别示例

    Android camera实时预览 实时处理,面部认证. 预览操作是网友共享的代码,我在继承SurfaceView 的CameraSurfaceView 中加入了帧监听事件,每次预览监听前五个数据帧,在处理做一个面部识别. 先看目录关系 自定义控件CameraSurfaceView.java 自定义接口方法CameraInterface.java CameraActivity预览界面. CameraSurfaceView.Java package com.centaur.camera.prev

  • Android动态人脸检测的示例代码(脸数可调)

    人脸检测 这里的人脸检测并非人脸识别,但是却可以识别出是否有人,当有人时候,你可以将帧图进行人脸识别(这里推荐Face++的sdk),当然我写的demo中没有加入人脸识别,有兴趣的朋友可以追加.face++ android自带的人脸检测 这里我们用到了人脸检测类为 FaceDetector.这个类提供了强大的人脸检测功能,可以方便我们进行人脸的侦测,因此我们使用他来进行动态的人脸检测,实现原理,其实也挺简单,主要是通过Carmen的回调PreviewCallback 在其中对帧图进行操作,并通过

  • opencv 做人脸识别 opencv 人脸匹配分析

    机器学习 机器学习的目的是把数据转换成信息. 机器学习通过从数据里提取规则或模式来把数据转成信息. 人脸识别 人脸识别通过级联分类器对特征的分级筛选来确定是否是人脸. 每个节点的正确识别率很高,但正确拒绝率很低. 任一节点判断没有人脸特征则结束运算,宣布不是人脸. 全部节点通过,则宣布是人脸. 工业上,常用人脸识别技术来识别物体. 对图片进行识别 复制代码 代码如下: #include "opencv2/core/core.hpp" #include "opencv2/obj

随机推荐