windows下Anaconda的安装与配置正解(Anaconda入门教程) 原创

一、下载anaconda

第一步当然是下载anaconda了,官方网站的下载需要用迅雷才能快点,或者直接到清华大学镜像站下载。当然这里推荐我们下载,下载地址都整理好了

下载地址:

http://www.jb51.net/softs/556392.html

清华大学提供了镜像,从这个镜像下载速度很快,地址:

https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/

选择相应的版本进行下载就好

下载过程中除了安装位置外,还有两个需要确认的地方。

第一个勾是是否把Anaconda加入环境变量,这涉及到能否直接在cmd中使用conda、jupyter、ipython等命令,推荐打勾,如果不打勾话问题也不大,可以在之后使用Anaconda提供的命令行工具进行操作;第二个是是否设置Anaconda所带的Python 3.6为系统默认的Python版本,这个自己看着办,问题不大。

一路安装完成以后,就可以打开cmd测试一下安装结果。

分别输入python、ipython、conda、jupyter notebook等命令,会看到相应的结果,说明安装成功。(python是进入python交互命令行;ipython是进入ipython交互命令行,很强大;conda是Anaconda的配置命令;jupyter notebook则会启动Web端的ipython notebook)

需要注意的是jupyter notebook命令会在电脑本地以默认配置启动jupyter服务,之后会再谈到这个。

Anaconda安装成功之后,我们需要修改其包管理镜像为国内源。

二、配置镜像地址,否则从官方网站下载升级文件太慢

安装完成后,找到Anaconda prompt,加入镜像地址,完成配置:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

在 Windows 上,会随 Anaconda 一起安装一批应用程序:

  • Anaconda Navigator,它是用于管理环境和包的 GUI
  • Anaconda Prompt 终端,它可让你使用命令行界面来管理环境和包
  • Spyder,它是面向科学开发的 IDE

为了避免报错,我推荐在默认环境下更新所有的包。打开 Anaconda Prompt (或者 Mac 下的终端),键入:

conda upgrade --all

并在提示是否更新的时候输入 y(Yes)以便让更新继续。初次安装下的软件包版本一般都比较老旧,因此提前更新可以避免未来不必要的问题。

管理包

安装了 Anaconda 之后,管理包是相当简单的。要安装包,请在终端中键入 conda install package_name。例如,要安装 numpy,请键入 conda install numpy

你还可以同时安装多个包。类似 conda install numpy scipy pandas 的命令会同时安装所有这些包。还可以通过添加版本号(例如 conda install numpy=1.10)来指定所需的包版本。

Conda 还会自动为你安装依赖项。例如,scipy 依赖于 numpy,因为它使用并需要 numpy。如果你只安装 scipy (conda install scipy),则 conda 还会安装 numpy(如果尚未安装的话)。

大多数命令都是很直观的。要卸载包,请使用 conda remove package_name。要更新包,请使用 conda update package_name。如果想更新环境中的所有包(这样做常常很有用),请使用 conda update --all。最后,要列出已安装的包,请使用前面提过的 conda list

如果不知道要找的包的确切名称,可以尝试使用 conda search search_term 进行搜索。例如,我知道我想安装 Beautiful Soup,但我不清楚确切的包名称。因此,我尝试执行 conda search beautifulsoup

搜索 beautifulsoup

它返回可用的 Beautiful Soup 包的列表,并列出了相应的包名称 beautifulsoup4。

管理环境

如前所述,你可以使用 conda 创建环境以隔离项目。要创建环境,请在终端中使用 conda create -n env_name list of packages。在这里,-n env_name 设置环境的名称(-n 是指名称),而 list of packages 是要安装在环境中的包的列表。例如,要创建名为 my_env 的环境并在其中安装 numpy,请键入 conda create -n my_env numpy

创建环境时,可以指定要安装在环境中的 Python 版本。这在你同时使用 Python 2.x 和 Python 3.x 中的代码时很有用。要创建具有特定 Python 版本的环境,请键入类似于 conda create -n py3 python=3conda create -n py2 python=2 的命令。实际上,我在我的个人计算机上创建了这两个环境。我将它们用作与任何特定项目均无关的通用环境,以处理普通的工作(可轻松使用每个 Python 版本)。这些命令将分别安装 Python 3 和 Python 2 的最新版本。要安装特定版本(例如 Python 3.3),请使用 conda create -n py python=3.3

进入环境

创建了环境后,在 OSX/Linux 上使用 source activate my_env 进入环境。在 Windows 上,请使用 activate my_env

进入环境后,你会在终端提示符中看到环境名称,它类似于 (my_env) ~ $。环境中只安装了几个默认的包,以及你在创建它时安装的包。你可以使用 conda list 检查这一点。在环境中安装包的命令与前面一样:conda install package_name。不过,这次你安装的特定包仅在你进入环境后才可用。要离开环境,请键入 source deactivate(在 OSX/Linux 上)。在 Windows 上,请使用 deactivate

保存和加载环境

共享环境这项功能确实很有用,它能让其他人安装你的代码中使用的所有包,并确保这些包的版本正确。你可以使用 conda env export > environment.yaml 将包保存为 YAML。命令的第一部分 conda env export 用于输出环境中的所有包的名称(包括 Python 版本)。

将导出的环境输出到终端中

上图中,你可以看到环境的名称和所有依赖项及其版本。导出命令的第二部分 > environment.yaml 将导出的文本写入到 YAML 文件 environment.yaml 中。现在可以共享此文件,而且其他人能够用于创建和你项目相同的环境。

要通过环境文件创建环境,请使用 conda env create -f environment.yaml。这会创建一个新环境,而且它具有同样的在 environment.yaml 中列出的库。

列出环境

如果忘记了环境的名称(我有时会这样),可以使用 conda env list 列出你创建的所有环境。你会看到环境的列表,而且你当前所在环境的旁边会有一个星号。默认的环境(即当你不在选定环境中时使用的环境)名为 root。

删除环境

如果你不再使用某些环境,可以使用 conda env remove -n env_name 删除指定的环境(在这里名为 env_name)。

使用环境

对我帮助很大的一点是,我的 Python 2 和 Python 3 具有独立的环境。我使用了 conda create -n py2 python=2 和 conda create -n py3 python=3 创建两个独立的环境,即 py2 和 py3。现在,我的每个 Python 版本都有一个通用环境。在所有这些环境中,我都安装了大多数标准的数据科学包(numpy、scipy、pandas 等)。

我还发现,为我从事的每个项目创建环境很有用。这对于与数据不相关的项目(例如使用 Flask 开发的 Web 应用)也很有用。例如,我为我的个人博客(使用 Pelican)创建了一个环境。

共享环境

在 GitHub 上共享代码时,最好同样创建环境文件并将其包括在代码库中。这能让其他人更轻松地安装你的代码的所有依赖项。对于不使用 conda 的用户,我通常还会使用 pip freeze(在此处了解详情)将一个 pip requirements.txt 文件导出并包括在其中。

继续补充一点:

配置完成,可以愉快地玩耍了。

输入:conda list 查看安装了那些包

测试一下:

切换当前环境:

当前是python3,如果切换到2.7,则输入

conda create -n python2 python=2.7

输入:

activate python2

完成环境切换

补充:

conda常用命令
查看当前系统下的环境
conda info -e
创建新的环境
# 指定python版本为2.7
conda create -n python2 python=2.7
# 同时安装必要的包
conda create -n python2 numpy matplotlib python=2.7
环境切换
# linux/Mac下需要使用source activate python2
activate python2
#退出环境
deactivate python2
移除环境
conda remove -n python2 --all

因为篇幅原因,具体的使用可以参考下面的文章

Windows下Anaconda的安装和简单使用方法

您可能感兴趣的文章:

  • 致Python初学者 Anaconda入门使用指南完整版
  • Windows下anaconda安装第三方包的方法小结(tensorflow、gensim为例)
  • Python学习之Anaconda的使用与配置方法
  • Windows下Anaconda的安装和简单使用方法
  • Anaconda多环境多版本python配置操作方法
  • 开源软件包和环境管理系统Anaconda的安装使用
  • python anaconda 安装 环境变量 升级 以及特殊库安装的方法
  • 解决python3在anaconda下安装caffe失败的问题
  • 利用Anaconda完美解决Python 2与python 3的共存问题
  • windows上安装Anaconda和python的教程详解
  • 更改Ubuntu默认python版本的两种方法python-> Anaconda
  • Python科学计算环境推荐——Anaconda
  • Anaconda入门使用总结
(0)

相关推荐

  • python anaconda 安装 环境变量 升级 以及特殊库安装的方法

    Anaconda 是一个旗舰版的python安装包, 因为普通的python没有库, 如果需要安装一些重要的库, 要经常一个一个下载,会非常麻烦. 所以这个一个集成的, 可以手动批量升级的软件. 而且库的安装也很全下载速度快. 从官网下载完以后, next 安装好. 配置环境变量, 把安装的文件夹的绝对路径拷贝到 环境变量的path里面. 不配置python都启动不了, 当然,如果之前安装过其他版本的python 可以考虑把之前多余的环境变量路径删掉. 打开anaconda prompt, 输入

  • 致Python初学者 Anaconda入门使用指南完整版

    打算学习 Python 来做数据分析的你,是不是在开始时就遇到各种麻烦呢? 到底该装 Python2 呢还是 Python3 ? 为什么安装 Python 时总是出错? 怎么安装工具包呢? 为什么提示说在安装这个工具前必须先安装一堆其他不明所以的工具? 相信大多数 Python 的初学者们都曾为环境问题而头疼不已,但你并不孤独,大家都是这么折腾过来的.为了在入门时少走弯路,并且让高涨的积极性不至于太受打击,这里推荐使用 Anaconda 来管理你的安装环境和各种工具包. 本文介绍了Anacond

  • Python科学计算环境推荐——Anaconda

    Anaconda是一个和Canopy类似的科学计算环境,但用起来更加方便.自带的包管理器conda也很强大. 首先是下载安装.Anaconda提供了Python2.7和Python3.4两个版本,同时如果需要其他版本,还可以通过conda来创建.安装完成后可以看到,Anaconda提供了Spyder,IPython和一个命令行.下面来看一下conda. 输入 conda list 来看一下所有安装时自带的Python扩展.粗略看了一下,其中包括了常用的 Numpy , Scipy , matpl

  • Python学习之Anaconda的使用与配置方法

    俗话说'人生苦短,我有Python',但是如果初学Python的过程中碰到包和Python版本的问题估计会让你再苦一会,我在学习Python的爬虫框架中看到看到了anaconda的介绍,简直是相见恨晚啊,我觉的每个Python的学习网站上首先都应该使用anaconda来进行教程,因为在实践的过程中光环境的各种报错就能消磨掉你所有的学习兴趣! 下面简单的介绍下anaconda,它是将Python版本和许多常用的package打包直接来使用的Python发行版,支持linux.mac.windows

  • 开源软件包和环境管理系统Anaconda的安装使用

    Anaconda 实际上是一个软件发行版,它附带了conda.Python和150多个科学包及其依赖项.其中,conda是一个开源的软件包管理系统和环境管理系统,和 virtualenv 功能差不多,可以在电脑上同时安装Python2和Python3. 安装: 试了下,不能使用pip安装,需要到 官网下载 ,然后安装. conda使用 通过conda管理包 # 安装pandas $ conda install pandas # 更新pandas $ conda update pandas # 删

  • Windows下anaconda安装第三方包的方法小结(tensorflow、gensim为例)

    anaconda 集成了很多科学计算中所需要的包,如numpy,scipy等等,具体查看anaconda中已经预先安装配置好的包有哪些,可以通过cmd命令,输入conda list 查看,如下图所示: 但是,因为实际需求,我们会需要导入列表中没有的第三方包,如gemsim,在anaconda中,我们可以参考以下步骤安装所需要的第三方包:         1.启动anaconda 命令窗口: 开始 > 所有程序 > anaconda >anaconda prompt    2.安装gens

  • 利用Anaconda完美解决Python 2与python 3的共存问题

    前言 现在Python3 被越来越多的开发者所接受,同时让人尴尬的是很多遗留的老系统依旧运行在 Python2 的环境中,因此有时你不得不同时在两个版本中进行开发,调试. 如何在系统中同时共存 Python2 和 Python3 是开发者不得不面对的问题,一个利好的消息是,Anaconda 能完美解决Python2 和 Python3 的共存问题,而且在 Windows 平台经常出现安装依赖包(比如 MySQL-python)失败的情况也得以解决. Anaconda 是什么? Anaconda

  • 解决python3在anaconda下安装caffe失败的问题

    Python 跟 Python3 完全就是两种语言 1. import caffe FAILED 环境为 Ubuntu 16 cuda 8.0 NVIDIA 361.77 Anaconda2.昨天莫名其妙Caffe不能用了: >>> import caffe Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/duchen

  • 更改Ubuntu默认python版本的两种方法python-> Anaconda

    你可以按照以下方法使用 ls 命令来查看你的系统中都有那些 Python 的二进制文件可供使用. $ ls /usr/bin/python* /usr/bin/python /usr/bin/python2 /usr/bin/python2.7 /usr/bin/python3 /usr/bin/python3.4 /usr/bin/python3.4m /usr/bin/python3m 执行如下命令查看默认的 Python 版本信息: $ python --version Python 2.

  • Windows下Anaconda的安装和简单使用方法

    Anaconda is a completely free Python distribution (including for commercial use and redistribution). It includes over 195 of the most popular Python packagesfor science, math, engineering, data analysis. 1.安装anaconda 之前什么都不需要安装,直接在官网下载anaconda,我下载的是P

  • Anaconda入门使用总结

    序 Python易用,但用好却不易,其中比较头疼的就是包管理和Python不同版本的问题,特别是当你使用Windows的时候.为了解决这些问题,有不少发行版的Python,比如WinPython.Anaconda等,这些发行版将python和许多常用的package打包,方便pythoners直接使用,此外,还有virtualenv.pyenv等工具管理虚拟环境. 个人尝试了很多类似的发行版,最终选择了Anaconda,因为其强大而方便的包管理与环境管理的功能.该文主要介绍下Anaconda,对

  • Anaconda多环境多版本python配置操作方法

    conda测试指南 在开始这个conda测试之前,你应该已经下载并安装好了Anaconda或者Miniconda 注意:在安装之后,你应该关闭并重新打开windows命令行. 一.Conda测试过程: 使用conda.首先我们将要确认你已经安装好了conda 配置环境.下一步我们将通过创建几个环境来展示conda的环境管理功能.使你更加轻松的了解关于环境的一切.我们将学习如何确认你在哪个环境中,以及如何做复制一个环境作为备份. 测试python.然后我们将检查哪一个版本的python可以被安装,

  • windows上安装Anaconda和python的教程详解

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因此,我们这里使用Python这个脚本语言来进行数字图像处理. 要使用Python,必须先安装python,一般是2.7版本以上,不管是在windows系统,还是Linux系统,安装都是非常简单的. 要使用python进行各种开发和科学计算,还需要安装对应的包.这和matlab非常相似,只是matla

随机推荐