python编程使用协程并发的优缺点

协程

协程是一种用户态的轻量级线程,又称微线程。

协程拥有自己的寄存器上下文和栈,调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。

优点:

1.无需线程上下文切换的开销
2.无需原子操作锁定及同步的开销
3.方便切换控制流,简化编程模型
4.高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。所以很适合用于高并发处理。

所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。

原子操作可以是一个步骤,也可以是多个操作步骤,但是其顺序是不可以被打乱,或者切割掉只执行部分。视作整体是原子性的核心。

缺点:

1.无法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程需要和进程配合才能运行在多CPU上.当然我们日常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
2.进行阻塞(Blocking)操作(如IO时)会阻塞掉整个程序

使用Gevent

gevent是python的一个并发框架,以微线程greenlet为核心,使用了epoll事件监听机制以及诸多其他优化而变得高效.

•简单示例

gevent的sleep可以交出控制权,当我们在受限于网络或IO的函数中使用gevent,这些函数会被协作式的调度, gevent的真正能力会得到发挥。Gevent处理了所有的细节, 来保证你的网络库会在可能的时候,隐式交出greenlet上下文的执行权。

import gevent
def foo():
  print('running in foo')
  gevent.sleep(0)
  print('com back from bar in to foo')
def bar():
  print('running in bar')
  gevent.sleep(0)
  print('com back from foo in to bar')
# 创建线程并行执行程序
gevent.joinall([
  gevent.spawn(foo),
  gevent.spawn(bar),
]) 

  执行结果

running in foo
running in bar
com back from bar in to foo
com back from foo in to bar

•同步异步

import random
import gevent
def task(pid):
  gevent.sleep(random.randint(0, 2) * 0.001)
  print('Task %s done' % pid)
def synchronous():
  for i in range(1, 10):
    task(i)
def asynchronous():
  threads = [gevent.spawn(task, i) for i in range(10)]
  gevent.joinall(threads)
print('Synchronous:')
synchronous()
print('Asynchronous:')
asynchronous() 

  执行输出

Synchronous:

Task 1 done

Task 2 done

Task 3 done

Task 4 done

Task 5 done

Task 6 done

Task 7 done

Task 8 done

Task 9 done

Asynchronous:

Task 1 done

Task 4 done

Task 5 done

Task 9 done

Task 6 done

Task 0 done

Task 2 done

Task 3 done

Task 7 done

Task 8 done

•以子类的方法使用协程

可以子类化Greenlet类,重载它的_run方法,类似多线线程和多进程模块

import gevent
from gevent import Greenlet
class Test(Greenlet):
  def __init__(self, message, n):
    Greenlet.__init__(self)
    self.message = message
    self.n = n
  def _run(self):
    print(self.message, 'start')
    gevent.sleep(self.n)
    print(self.message, 'end')
tests = [
  Test("hello", 3),
  Test("world", 2),
]
for test in tests:
  test.start() # 启动
for test in tests:
  test.join() # 等待执行结束 

•使用monkey patch修改系统标准库(自动切换协程)

当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。

由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。

由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成

import gevent
import requests
from gevent import monkey
monkey.patch_socket()
def task(url):
  r = requests.get(url)
  print('%s bytes received from %s' % (len(r.text), url))
gevent.joinall([
  gevent.spawn(task, 'https://www.baidu.com/'),
  gevent.spawn(task, 'https://www.qq.com/'),
  gevent.spawn(task, 'https://www.jd.com/'),
]) 

  执行输出

2443 bytes received from https://www.baidu.com/

108315 bytes received from https://www.jd.com/

231873 bytes received from https://www.qq.com/

可以看出3个网络操作是并发执行的,而且结束顺序不同

参考链接:http://hhkbp2.github.io/gevent-tutorial/

总结

以上所述是小编给大家介绍的python编程使用协程并发的优缺点,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • Python爬虫运用正则表达式的方法和优缺点

    前言 我看到最近几部电影很火,查了一下猫眼电影上的数据,发现还有个榜单,里面有各种经典和热映电影的排行榜,然后我觉得电影封面图还挺好看的,想着一张一张下载真是费时费力,于是突发奇想,好像可以用一下最近学的东西实现我的需求,学习了正则表达式之后,想着要感受一下它在爬虫里面的效果和优缺点. 目标:爬取Top100榜单上电影的封面图 Top100榜单规则:将猫眼电影库中的经典影片,按照评分和评分人数从高到低综合排序取前100名,每天上午10点更新.相关数据来源于"猫眼电影库". 下面是我做的

  • 全面分析Python的优点和缺点

    Python的优点和缺点 本节内容如下: Python的优点 Python的缺点 使用Python的知名网站 Python的优点 1. 简单 Python的语法非常优雅,甚至没有像其他语言的大括号,分号等特殊符号,代表了一种极简主义的设计思想.阅读Python程序像是在读英语. 2. 易学 Python入手非常快,学习曲线非常低,可以直接通过命令行交互环境来学习Python编程. 3. 免费/开源 Python的所有内容都是免费开源的,这意味着你不需要花一分钱就可以免费使用Python,并且你可

  • Python的缺点和劣势分析

    Python的短板 虽然Python拥有很多优点,但没有哪种编程语言能够胜任所有工 作,因此Python并不能完美地满足一切需求.如果要确定Python是否适 用于当前场景,还需要了解Python不擅长的领域. Python不是速度最快的语言 Python的执行速度可能算得上是一个缺点.Python不是一个完全编 译的语言,而是先编译为内部字节码形式,然后交由Python解释器来执 行.Python为某些操作给出了高效的实现,例如,用正则表达式解析字 符串,可以做到与自己编写的任何C语言代码一样

  • Python Web开发模板引擎优缺点总结

    做 Web 开发少不了要与模板引擎打交道.我陆续也接触了 Python 的不少模板引擎,感觉可以总结一下了. 一.首先按照我的熟悉程度列一下:pyTenjin:我在开发 Doodle 和 91 外教时使用.Tornado.template:我在开发知乎日报时使用.PyJade:我在开发知乎日报时接触过.Mako:我只在一个早期就夭折了的小项目里用过.Jinja2:我只拿它做过一些 demo. 其他就不提了,例如 Django 的模板,据说又慢又难用,我根本就没接触过. 二.再说性能 很多测试就是

  • python编程使用协程并发的优缺点

    协程 协程是一种用户态的轻量级线程,又称微线程. 协程拥有自己的寄存器上下文和栈,调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈.因此:协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置. 优点: 1.无需线程上下文切换的开销 2.无需原子操作锁定及同步的开销 3.方便切换控制流,简化编程模型 4.高并发+高扩展性+低成本:一个CPU支持上万的协程都不

  • Python异步编程之协程任务的调度操作实例分析

    本文实例讲述了Python异步编程之协程任务的调度操作.分享给大家供大家参考,具体如下: 我们知道协程是异步进行的,碰到IO阻塞型操作时需要调度其他任务,那么这个调度规则或者是算法是怎样的呢?现在有以下几个疑问: 1.多个任务准备好,需要运行时,优先执行哪一个? 2.一个任务运行时,如果别的任务准备好了,是否需要中断当前任务呢? 在网上找了很多资料,也无法找到相关的资料,于是编写了几个简单的程序,查看任务的执行过程. 根据Python的asyncio我们可以编写一个简单的程序: import a

  • python 协程并发数控制

    目录 多线程之信号量 协程中使用信号量控制并发 aiohttp 中 TCPConnector 连接池 前言: 本篇博客要采集的站点:[看历史,通天下-历史剧网] 目标数据是该站点下的热门历史事件,列表页分页规则如下所示: http://www.lishiju.net/hotevents/p0 http://www.lishiju.net/hotevents/p1 http://www.lishiju.net/hotevents/p2 首先我们通过普通的多线程,对该数据进行采集,由于本文主要目的是

  • python进阶之协程你了解吗

    目录 协程的定义 协程和线程差异 协程的标准 协程的优点 协程的缺点 python中实现协程的方式 async&await关键字 事件循环 协程函数和协程对象 await Task对象 asyncio.Future对象 futures.Future对象 异步迭代器 什么是异步迭代器? 什么是异步可迭代对象? 异步上下文管理器 uvloop 异步redis 异步MySQL 爬虫 总结 协程的定义 协程(Coroutine),又称微线程,纤程.(协程是一种用户态的轻量级线程) 作用:在执行 A 函数

  • Python中的协程(Coroutine)操作模块(greenlet、gevent)

    目录 一.协程介绍 1.介绍 2.举例 3.优点如下: 4.缺点如下: 5.总结协程特点: 二.greenlet(绿叶)模块 1.安装模块 2.greenlet实现状态切换 3.效率对比 三.gevent模块 1.安装 2. 用法介绍 1.遇到io主动切换 2. 查看threading.current_thread().getName() 3.Gevent之同步与异步 4.Gevent之应用 1. 服务端 2.多线程并发多个客户端 一.协程介绍 协程:英文名Coroutine,是单线程下的并发,

  • python生成器/yield协程/gevent写简单的图片下载器功能示例

    本文实例讲述了python生成器/yield协程/gevent写简单的图片下载器功能.分享给大家供大家参考,具体如下: 1.生成器: '''第二种生成器''' # 函数只有有yield存在就是生成器 def test(i): while True: i += 1 res = yield i print(res) i += 1 return res def main(): t = test(1) # 创建生成器对象 print(next(t)) # next第一次执行从上到下,yield是终点 p

  • python 如何引入协程和原理分析

    相关概念 并发:指一个时间段内,有几个程序在同一个cpu上运行,但是任意时刻只有一个程序在cpu上运行.比如说在一秒内cpu切换了100个进程,就可以认为cpu的并发是100. 并行:值任意时刻点上,有多个程序同时运行在cpu上,可以理解为多个cpu,每个cpu独立运行自己程序,互不干扰.并行数量和cpu数量是一致的. 我们平时常说的高并发而不是高并行,是因为cpu的数量是有限的,不可以增加. 形象的理解:cpu对应一个人,程序对应喝茶,人要喝茶需要四个步骤(可以对应程序需要开启四个线程):1烧

  • python Task在协程调用实例讲解

    1.说明 Tasks用于并发调度协程,通过asyncio.create_task(协程对象)创建Task对象,使协程能够加入事件循环,等待调度执行.除使用asyncio.create_task()函数外,还可使用低级loop.create_task()或ensure_future()函数.推荐使用手动实例Task对象. 2.使用注意 Python3.7中添加到asyncio.create_task函数.在Python3.7之前,可以使用低级asyncio.ensure_future函数. 3.实

  • python3通过gevent.pool限制协程并发数量的实现方法

    协程虽然是轻量级的线程,但到达一定数量后,仍然会造成服务器崩溃出错.最好的方法通过限制协程并发数量来解决此类问题. server代码: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : Cain # @Email : 771535427@qq.com # @Filename : gevnt_sockserver.py # @Last modified : 2017-11-24 16:31 # @Description : impo

  • Python进阶之协程详解

    目录 协程 协程的应用场景 抢占式调度的缺点 用户态协同调度的优势 协程的运行原理 Python 中的协程 总结 协程 协程(co-routine,又称微线程)是一种多方协同的工作方式.当前执行者在某个时刻主动让出(yield)控制流,并记住自身当前的状态,以便在控制流返回时能从上次让出的位置恢复(resume)执行. 简而言之,协程的核心思想就在于执行者对控制流的 “主动让出” 和 “恢复”.相对于,线程此类的 “抢占式调度” 而言,协程是一种 “协作式调度” 方式. 协程的应用场景 抢占式调

随机推荐