mysql 数据库中索引原理分析说明

下面,我们举例来说明一下聚集索引和非聚集索引的区别:
其实,我们的汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。
我们把这种正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。
如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63 页,“张”的下面是“弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。
我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。
通过以上例子,我们可以理解到什么是“聚集索引”和“非聚集索引”。
进一步引申一下,我们可以很容易的理解:每个表只能有一个聚集索引,因为目录只能按照一种方法进行排序。
(二)何时使用聚集索引或非聚集索引
下面的表总结了何时使用聚集索引或非聚集索引(很重要)。



































动作描述 列经常被分组排序 返回某范围内的数据 一个或极少不同值 小数目的不同 大数目的不同值 频繁更新的列 外键列 主键列 频繁修改索引列
使用聚集索引 不应 不应 不应 不应 不应
不使用聚集索引 不应 不应 不应

事实上,我们可以通过前面聚集索引和非聚集索引的定义的例子来理解上表。如:返回某范围内的数据一项。比如您的某个表有一个时间列,恰好您把聚合索引建立在了该列,这时您查询2004年1月1日至2004年10月1日之间的全部数据时,这个速度就将是很快的,因为您的这本字典正文是按日期进行排序的,聚类索引只需要找到要检索的所有数据中的开头和结尾数据即可;而不像非聚集索引,必须先查到目录中查到每一项数据对应的页码,然后再根据页码查到具体内容。
(三)结合实际,谈索引使用的误区
理论的目的是应用。虽然我们刚才列出了何时应使用聚集索引或非聚集索引,但在实践中以上规则却很容易被忽视或不能根据实际情况进行综
合分析。下面我们将根据在实践中遇到的实际问题来谈一下索引使用的误区,以便于大家掌握索引建立的方法。
1、主键就是聚集索引
这种想法笔者认为是极端错误的,是对聚集索引的一种浪费。虽然SQL SERVER默认是在主键上建立聚集索引的。
通常,我们会在每个表中都建立一个ID列,以区分每条数据,并且这个ID列是自动增大的,步长一般为1。我们的这个办公自动化的实例中的列Gid就是如此。此时,如果我们将这个列设为主键,SQL SERVER会将此列默认为聚集索引。这样做有好处,就是可以让您的数据在数据库中按照ID进行物理排序,但笔者认为这样做意义不大。
显而易见,聚集索引的优势是很明显的,而每个表中只能有一个聚集索引的规则,这使得聚集索引变得更加珍贵。
从我们前面谈到的聚集索引的定义我们可以看出,使用聚集索引的最大好处就是能够根据查询要求,迅速缩小查询范围,避免全表扫描。在实际应用中,因为ID号是自动生成的,我们并不知道每条记录的ID号,所以我们很难在实践中用ID号来进行查询。这就使让ID号这个主键作为聚集索引成为一种资源浪费。其次,让每个ID号都不同的字段作为聚集索引也不符合“大数目的不同值情况下不应建立聚合索引”规则;当然,
这种情况只是针对用户经常修改记录内容,特别是索引项的时候会负作用,但对于查询速度并没有影响。
在办公自动化系统中,无论是系统首页显示的需要用户签收的文件、会议还是用户进行文件查询等任何情况下进行数据查询都离不开字段的是“日期”还有用户本身的“用户名”。
通常,办公自动化的首页会显示每个用户尚未签收的文件或会议。虽然我们的where语句可以仅仅限制当前用户尚未签收的情况,但如果您的系统已建立了很长时间,并且数据量很大,那么,每次每个用户打开首页的时候都进行一次全表扫描,这样做意义是不大的,绝大多数的用户1个月前的文件都已经浏览过了,这样做只能徒增数据库的开销而已。事实上,我们完全可以让用户打开系统首页时,数据库仅仅查询这个用户近3个月来未阅览的文件,通过“日期”这个字段来限制表扫描,提高查询速度。如果您的办公自动化系统已经建立的2年,那么您的首页显示速度理论上将是原来速度8倍,甚至更快。
在这里之所以提到“理论上”三字,是因为如果您的聚集索引还是盲目地建在ID这个主键上时,您的查询速度是没有这么高的,即使您在“日
期”这个字段上建立的索引(非聚合索引)。下面我们就来看一下在1000万条数据量的情况下各种查询的速度表现(3个月内的数据为25万条)

(1)仅在主键上建立聚集索引,并且不划分时间段:
Select gid,fariqi,neibuyonghu,title from tgongwen
用时:128470毫秒(即:128秒)
(2)在主键上建立聚集索引,在fariq上建立非聚集索引:
select gid,fariqi,neibuyonghu,title from Tgongwen
where fariqi> dateadd(day,-90,getdate())
用时:53763毫秒(54秒)
(3)将聚合索引建立在日期列(fariqi)上:
select gid,fariqi,neibuyonghu,title from Tgongwen
where fariqi> dateadd(day,-90,getdate())
用时:2423毫秒(2秒)
虽然每条语句提取出来的都是25万条数据,各种情况的差异却是巨大的,特别是将聚集索引建立在日期列时的差异。事实上,如果您的数据库真的有1000万容量的话,把主键建立在ID列上,就像以上的第1、2种情况,在网页上的表现就是超时,根本就无法显示。这也是我摒弃ID列作为聚集索引的一个最重要的因素。
得出以上速度的方法是:在各个select语句前加:declare @d datetime
set @d=getdate()
并在select语句后加:
select [语句执行花费时间(毫秒)]=datediff(ms,@d,getdate())
2、只要建立索引就能显著提高查询速度
事实上,我们可以发现上面的例子中,第2、3条语句完全相同,且建立索引的字段也相同;不同的仅是前者在fariqi字段上建立的是非聚合索引,后者在此字段上建立的是聚合索引,但查询速度却有着天壤之别。所以,并非是在任何字段上简单地建立索引就能提高查询速度。
从建表的语句中,我们可以看到这个有着1000万数据的表中fariqi字段有5003个不同记录。在此字段上建立聚合索引是再合适不过了。在现实中,我们每天都会发几个文件,这几个文件的发文日期就相同,这完全符合建立聚集索引要求的:“既不能绝大多数都相同,又不能只有极少数相同”的规则。由此看来,我们建立“适当”的聚合索引对于我们提高查询速度是非常重要的。
3、把所有需要提高查询速度的字段都加进聚集索引,以提高查询速度。上面已经谈到:在进行数据查询时都离不开字段的是“日期”还有用户本身的“用户名”。既然这两个字段都是如此的重要,我们可以把他们合并起来,建立一个复合索引(compound index)。
很多人认为只要把任何字段加进聚集索引,就能提高查询速度,也有人感到迷惑:如果把复合的聚集索引字段分开查询,那么查询速度会减慢吗?带着这个问题,我们来看一下以下的查询速度(结果集都是25万条数据):(日期列fariqi首先排在复合聚集索引的起始列,用户名neibuyonghu排在后列)
(1)select gid,fariqi,neibuyonghu,title from Tgongwen where fariqi>'2004-5-5'
查询速度:2513毫秒
(2)select gid,fariqi,neibuyonghu,title from Tgongwen where fariqi>'2004-5-5' and neibuyonghu='办公室'
查询速度:2516毫秒
(3)select gid,fariqi,neibuyonghu,title from Tgongwen where neibuyonghu='办公室'
查询速度:60280毫秒
从以上试验中,我们可以看到如果仅用聚集索引的起始列作为查询条件和同时用到复合聚集索引的全部列的查询速度是几乎一样的,甚至比用上全部的复合索引列还要略快(在查询结果集数目一样的情况下);而如果仅用复合聚集索引的非起始列作为查询条件的话,这个索引是不起任何作用的。当然,语句1、2的查询速度一样是因为查询的条目数一样,如果复合索引的所有列都用上,而且查询结果少的话,这样就会形成“索引覆盖”,因而性能可以达到最优。同时,请记住:无论您是否经常使用聚合索引的其他列,但其前导列一定要是使用最频繁的列。
(四)其他书上没有的索引使用经验总结
1、用聚合索引比用不是聚合索引的主键速度快
下面是实例语句:(都是提取25万条数据)
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi='2004-9-16'
使用时间:3326毫秒
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where gid<=250000
使用时间:4470毫秒
这里,用聚合索引比用不是聚合索引的主键速度快了近1/4。
2、用聚合索引比用一般的主键作order by时速度快,特别是在小数据量情况下
select gid,fariqi,neibuyonghu,reader,title from Tgongwen order by fariqi
用时:12936
select gid,fariqi,neibuyonghu,reader,title from Tgongwen order by gid
用时:18843
这里,用聚合索引比用一般的主键作order by时,速度快了3/10。事实上,如果数据量很小的话,用聚集索引作为排序列要比使用非聚集索引速度快得明显的多;而数据量如果很大的话,如10万以上,则二者的速度差别不明显。
3、使用聚合索引内的时间段,搜索时间会按数据占整个数据表的百分比成比例减少,而无论聚合索引使用了多少个
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi>'2004-1-1'
用时:6343毫秒(提取100万条)
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi>'2004-6-6'
用时:3170毫秒(提取50万条)
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi='2004-9-16'
用时:3326毫秒(和上句的结果一模一样。如果采集的数量一样,那么用大于号和等于号是一样的)
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi>'2004-1-1' and fariqi<'2004-6-6'
用时:3280毫秒
4 、日期列不会因为有分秒的输入而减慢查询速度
下面的例子中,共有100万条数据,2004年1月1日以后的数据有50万条,但只有两个不同的日期,日期精确到日;之前有数据50万条,有5000个
不同的日期,日期精确到秒。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi>'2004-1-1' order by fariqi
用时:6390毫秒
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi<'2004-1-1' order by fariqi
用时:6453毫秒

(0)

相关推荐

  • 优化Mysql数据库的8个方法

    1.创建索引对于查询占主要的应用来说,索引显得尤为重要.很多时候性能问题很简单的就是因为我们忘了添加索引而造成的,或者说没有添加更为有效的索引导致.如果不加索引的话,那么查找任何哪怕只是一条特定的数据都会进行一次全表扫描,如果一张表的数据量很大而符合条件的结果又很少,那么不加索引会引起致命的性能下降.但是也不是什么情况都非得建索引不可,比如性别可能就只有两个值,建索引不仅没什么优势,还会影响到更新速度,这被称为过度索引.2.复合索引比如有一条语句是这样的:select * from users

  • MySQL性能优化的一些技巧帮助你的数据库

    你完成了你的品牌新的应用程序,一切工作就像一个魅力.用户来使用你的网络.每个人是幸福的. 然后,突然间,一个大爆发的用户杀死你的MySQL服务器,您的网站已关闭.出了什么问题?你怎么能阻止它吗? 以下是MySQL性能优化的一些技巧,将帮助你,帮助你的数据库. 大处着眼 在早期的发展阶段,你应该知道预期到您的应用程序的用户数.如果你希望很多用户来说,你应该想想大,从一开始,计划进行复制,可扩展性和性能. 但是,如果你优化你的SQL代码,架构和索引策略,也许你不会需要大环境.你必须总是三思而后行的性

  • Mysql数据库之索引优化

    MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能出色,但所谓"好马配好鞍",如何能够更好的使用它,已经成为开发工程师的必修课,我们经常会从职位描述上看到诸如"精通MySQL"."SQL语句优化"."了解数据库原理"等要求.我们知道一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,

  • MySQL数据库优化详解

    mysql表复制 复制表结构+复制表数据 mysql> create table t3 like t1; mysql> insert into t3 select * from t1; mysql索引 ALTER TABLE用来创建普通索引.UNIQUE索引或PRIMARY KEY索引 ALTER TABLE table_name ADD INDEX index_name (column_list) ALTER TABLE table_name ADD UNIQUE (column_list)

  • MySQL 联合索引与Where子句的优化 提高数据库运行效率

    网站系统上线至今,数据量已经不知不觉上到500M,近8W记录了.涉及数据库操作的基本都是变得很慢了,用的人都会觉得躁火~~然后把这个情况在群里一贴,包括机器配置什么的一说,马上就有群友发话了,而且帮我确定了不是机器配置的问题,"深圳-枪手"热心人他的机器512内存过百W的数据里也跑得飞快,甚至跟那些几W块的机器一样牛(吹过头了),呵呵~~~ 在群友的分析指点下,尝试把排序.条件等一个一个去除来做测试,结果发现问题就出在排序部分,去除排序的时候,执行时间由原来的48秒变成0.3x秒,这是

  • mysql数据库优化总结(心得)

     1. 优化你的MySQL查询缓存在MySQL服务器上进行查询,可以启用高速查询缓存.让数据库引擎在后台悄悄的处理是提高性能的最有效方法之一.当同一个查询被执行多次时,如果结果是从缓存中提取,那是相当快的.但主要的问题是,它是那么容易被隐藏起来以至于我们大多数程序员会忽略它.在有些处理任务中,我们实际上是可以阻止查询缓存工作的. 复制代码 代码如下: // query cache does NOT work$r = mysql_query("SELECT username FROM user W

  • 如何提高MYSQL数据库的查询统计速度 select 索引应用

    数据库系统是管理信息系统的核心,基于数据库的联机事务处理(OLTP)以及联机分析处理(OLAP)是银行.企业.政府等部门最为重要的计算机应用之一.从大多数系统的应用实例来看,查询操作在各种数据库操作中所占据的比重最大,而查询操作所基于的SELECT语句在SQL语句中又是代价最大的语句.举例来说,如果数据的量积累到一定的程度,比如一个银行的账户数据库表信息积累到上百万甚至上千万条记录,全表扫描一次往往需要数十分钟,甚至数小时.如果采用比全表扫描更好的查询策略,往往可以使查询时间降为几分钟,由此可见

  • MySQL数据库优化技术之配置技巧总结

    本文实例讲述了MySQL数据库优化技术的配置方法.分享给大家供大家参考,具体如下: (一)减少数据库访问 对于可以静态化的页面,尽可能静态化 对一个动态页面中可以静态的局部,采用静态化 部分数据可以生成XML,或者文本文件形式保存 使用数据缓存技术,例如: MemCached (二)优化的检测方法 1.用户体验检测 2.Mysql状态检测 在Mysql命令行里面使用show status命令,得到当前mysql状态. 主要关注下列属性: key_read_requests (索引读的请求数)(k

  • MySQL数据库优化技术之索引使用技巧总结

    本文实例总结了MySQL数据库优化技术的索引用法.分享给大家供大家参考,具体如下: 这里紧接上一篇<MySQL数据库优化技术之配置技巧总结>,进一步分析索引优化的技巧: (七)表的优化 1. 选择合适的数据引擎 MyISAM:适用于大量的读操作的表 InnoDB:适用于大量的写读作的表 2.选择合适的列类型 使用 SELECT * FROM TB_TEST PROCEDURE ANALYSE()可以对这个表的每一个字段进行分析,给出优化列类型建议 3.对于不保存NULL值的列使用NOT NUL

  • mysql 数据库中my.ini的优化 2G内存针对站多 抗压型的设置

    物理内存越大,设置就越大.默认为2402,调到512-1024最佳 innodb_additional_mem_pool_size=4M 默认为2M innodb_flush_log_at_trx_commit=1 (设置为0就是等到innodb_log_buffer_size列队满后再统一储存,默认为1) innodb_log_buffer_size=2M 默认为1M innodb_thread_concurrency=8 你的服务器CPU有几个就设置为几,建议用默认一般为8 key_buff

随机推荐