linux 可执行文件与写操作的同步问题(文件读写操作产生的锁机制)

当一个可执行文件已经为write而open时,此时的可执行文件是不允许被执行的。反过来,一个文件正在执行时,它也是不允许同时被write模式而open的。这个约束很好理解,因为文件执行和文件被写应该需要同步保护,因此内核会保证这种同步。那么内核是如何实现该机制的呢?
Inode结点中包含一个数据项,叫做i_writecount,很明显是用于记录文件被写的个数的,用于同步的,其类型也是atomic_t. 内核中有两个我们需要了解的函数,与write操作有关,分别是:

代码如下:

int get_write_access(struct inode * inode)
{
    spin_lock(&inode->i_lock);
    if (atomic_read(&inode->i_writecount) < 0) {
                spin_unlock(&inode->i_lock);
        return -ETXTBSY;
    }
    atomic_inc(&inode->i_writecount);
        spin_unlock(&inode->i_lock);
    return 0;
}

int deny_write_access(struct file * file)
{
    struct inode *inode = file->f_path.dentry->d_inode;
        spin_lock(&inode->i_lock);
    if (atomic_read(&inode->i_writecount) > 0) {//如果文件被打开了,返回失败
                spin_unlock(&inode->i_lock);
        return -ETXTBSY;
    }
        atomic_dec(&inode->i_writecount);
    spin_unlock(&inode->i_lock);
}

这两个函数都很简单,get_write_acess作用就和名称一致,同样deny_write_access也是。如果一个文件被执行了,要保证它在执行的过程中不能被写,那么在开始执行前应该调用deny_write_access 来关闭写的权限。那就来检查execve系统调用有没有这么做。
Sys_execve中调用do_execve,然后又调用函数open_exec,看一下open_exec的代码:


代码如下:

struct file *open_exec(const char *name)
{
    struct file *file;
    int err;
        file = do_filp_open(AT_FDCWD, name,
                O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
                MAY_EXEC | MAY_OPEN);

if (IS_ERR(file))
        goto out;
        err = -EACCES;

if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
        goto exit;

if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
        goto exit;

fsnotify_open(file->f_path.dentry);
    err = deny_write_access(file);//调用
       if (err)
        goto exit;

out:
    return file;

exit:
    fput(file);
    return ERR_PTR(err);
}

明显看到了deny_write_access的调用,和预想的完全一致。在open的调用里,应该有get_write_access的调用。在open调用相关的__dentry_open函数中就包含了对该函数的调用。


代码如下:

if (f->f_mode & FMODE_WRITE) {
    error = __get_file_write_access(inode, mnt);
    if (error)
            goto cleanup_file;
    if (!special_file(inode->i_mode))
      file_take_write(f);
}

其中__get_file_write_access(inode, mnt)封装了get_write_access.
那么内核又是如何保证一个正在被写的文件是不允许被执行的呢?这个同样也很简单,当一个文件已经为write而open时,它对应的inode的i_writecount会变成1,因此在执行execve时同样会调用deny_write_access 中读取到i_writecount>0之后就会返回失败,因此execve也就会失败返回。
这里是写文件与i_writecount相关的场景:
写打开一个文件时,在函数dentry_open中:


代码如下:

if (f->f_mode & FMODE_WRITE) {
    error = get_write_access(inode);
    if (error)
    goto cleanup_file;
}

当然在文件关闭时,会将i_writecount--;关闭时会执行代码:


代码如下:

if (file->f_mode & FMODE_WRITE)
    put_write_access(inode);

put_write_access 代码很简单:


代码如下:

static inline void put_write_access(struct inode * inode)
{
    atomic_dec(&inode->i_writecount);
}

于是乎自己写了个简单的代码,一个空循环,文件在执行的时候,在bash中,echo 111 >>可执行文件,结果预期之中,返回失败,并提示信息 text file busy.
那么该机制是否同样适用于映射机制呢,在执行可执行文件时,会mmap一些关联的动态链接库,这些动态链接库是否被mmap之后就不允许被写以及正在写时不允许mmap呢?这个是需要考虑的,因为它关系到安全的问题。因为库文件也是可执行的代码,被篡改同样会引起安全问题。
Mmap在调用mmap_region的函数里,有一个相关的检查:


代码如下:

if (vm_flags & VM_DENYWRITE) {         
        error = deny_write_access(file);
    if (error)
        goto free_vma;
    correct_wcount = 1;
}

其中,mmap调用中的flags参数会被正确的赋值给vm_flags,对应关系是MAP_DENYWRIRE被设置了,那么VM_DENYWRITE就对应的也被设置。下面写了个简单的代码,做一下测试:


代码如下:

#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
int main()
{
        int fd;
    void *src = NULL;
    fd = open("test.txt",O_RDONLY);
    if (fd != 0)
        {
        if ((src = mmap(0,5,PROT_READ|PROT_EXEC  ,MAP_PRIVATE|        MAP_DENYWRITE,fd,0))== MAP_FAILED)
                {
            printf("MMAP error\n");
            printf("%s\n",strerror(errno));
                }else{
            printf("%x\n",src);
        }
    }

FILE * fd_t = fopen("test.txt","w");
    if( !fd_t)
    {
                printf("open for write error\n");
        printf("%s\n",strerror(errno));
        return 0;
    }

if (fwrite("0000",sizeof(char),4,fd_t) != 4)
    {
        printf("fwrite error \n");
    }

fclose(fd_t);
    close(fd);
    return 1;
}

最后的test.txt被写成了”0000”,很奇怪,貌似MAP_DENTWRITE不起作用了。于是man mmap查看,发现:

  MAP_DENYWRITE

  This  flag  is ignored.  (Long ago, it signaled that attempts to write to the underlying file should fail with ETXTBUSY. But this was a source of denial-of-service attacks.)

原来这个标识在用户层已经不起作用了啊,而且还说明了原因,容易引起拒绝式服务攻击。攻击者恶意的将某些系统程序要写的文件以MAP_DENYWRITE模式映射,会导致正常程序写文件失败。不过VM_DENYWRITE在内核里还是有使用的,在mmap中还是有对deny_write_access的调用, 但是对它的调用已经不是由mmap中的flag参数的MAP_DENYWRITE驱动的了。
那与可执行文件相关的动态链接库文件就悲剧了,大家都知道动态链接库使用的也是mmap,这也导致动态链接库在运行时可以被更改。其实我这就是为了确认这点。这也导致我需要自己写同步控制代码了。我们可以使用inode中的i_security以及file结构的f_secutiry变量来写自己的同步逻辑,就是麻烦了不少,还要写内核模块,哎,工作量又增加了啊。安全问题是个麻烦的问题...

(0)

相关推荐

  • Linux中执行shell脚本的4种方法总结

    bash shell 脚本的方法有多种,现在作个小结.假设我们编写好的shell脚本的文件名为hello.sh,文件位置在/data/shell目录中并已有执行权限. 方法一:切换到shell脚本所在的目录(此时,称为工作目录)执行shell脚本: 复制代码 代码如下: cd /data/shell ./hello.sh ./的意思是说在当前的工作目录下执行hello.sh.如果不加上./,bash可能会响应找到不到hello.sh的错误信息.因为目前的工作目录(/data/shell)可能不在

  • Linux中的冷热页机制简述

    什么是冷热页? 在Linux Kernel的物理内存管理的Buddy System中,引入了冷热页的概念.冷页表示该空闲页已经不再高速缓存中了(一般是指L2 Cache),热页表示该空闲页仍然在高速缓存中.冷热页是针对于每CPU的,每个zone中,都会针对于所有的CPU初始化一个冷热页的per-cpu-pageset. 为什么要有冷热页? 作用有3点: Buddy Allocator在分配order为0的空闲页的时候,如果分配一个热页,那么由于该页已经存在于L2 Cache中了.CPU写访问的时

  • linux下安装apache与php;Apache+PHP+MySQL配置攻略

    1.apache  在如下页面下载apache的for Linux 的源码包   http://www.apache.org/dist/httpd/;  存至/home/xx目录,xx是自建文件夹,我建了一个wj的文件夹. 命令列表:   cd /home/wj  tar -zxvf httpd-2.0.54.tar.gz mv httpd-2.0.54 apache  cd apache  ./configure --prefix=/usr/local/apache2 --enable-mod

  • Linux系统(X64)安装Oracle11g完整安装图文教程另附基本操作

    一.修改操作系统核心参数 在Root用户下执行以下步骤: 1)修改用户的SHELL的限制,修改/etc/security/limits.conf文件 输入命令:vi /etc/security/limits.conf,按i键进入编辑模式,将下列内容加入该文件. oracle soft nproc 2047 oracle hard nproc 16384 oracle soft nofile 1024 oracle hard nofile 65536 编辑完成后按Esc键,输入":wq"

  • linux命令详解之useradd命令使用方法

    Linux 系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统.用户的账号一方面可以帮助系统管理员对使用系统的用户进行跟踪,并控制他们对系统资源的访问:另一方面也可以帮助用户组织文件,并为用户提供安全性保护.每个用户账号都拥有一个惟一的用户名和各自的口令.用户在登录时键入正确的用户名和口令后,就能够进入系统和自己的主目录. 实现用户账号的管理,要完成的工作主要有如下几个方面:用户账号的添加.删除与修改.用户口令的管

  • linux shell中 if else以及大于、小于、等于逻辑表达式介绍

    比如比较字符串.判断文件是否存在及是否可读等,通常用"[]"来表示条件测试. 注意:这里的空格很重要.要确保方括号的空格.笔者就曾因为空格缺少或位置不对,而浪费好多宝贵的时间. if ....; then....elif ....; then....else....fi[ -f "somefile" ] :判断是否是一个文件[ -x "/bin/ls" ] :判断/bin/ls是否存在并有可执行权限[ -n "$var" ]

  • Linux下安装mysql-5.6.4 的图文教程

    在开始安装前,先说明一下mysql-5.6.4与较低的版本在安装上的区别,从mysql-5.5起,mysql源码安装开始使用cmake了,因此当我们配置安装目录./configure --perfix=/.....的时候和以前的会有些区别,这点我们稍后会提到. 一:解压缩mysql-5.6.4-m7-tar.zip 1>  unzip mysql-5.6.4-m7-tar.zip   会生成mysql-5.6.4-m7-tar.gz的压缩文件 2> tar -zxvf mysql-5.6.4-

  • linux下用cron定时执行任务的方法

    名称 : crontab 使用权限 : 所有使用者 使用方式 : crontab file [-u user]-用指定的文件替代目前的crontab. crontab-[-u user]-用标准输入替代目前的crontab. crontab-1[user]-列出用户目前的crontab. crontab-e[user]-编辑用户目前的crontab. crontab-d[user]-删除用户目前的crontab. crontab-c dir- 指定crontab的目录. crontab文件的格式

  • linux 内存管理机制详细解析

    物理内存和虚拟内存我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念. 物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的磁盘空间被称为交换空间(Swap Space). 作为物理内存的扩展,linux会在物理内存不足时,使用交换分区的

  • linux系统下实现mysql热备份详细步骤(mysql主从复制)

    主从的作用: 1.可以当做一种备份方式 2.用来实现读写分离,缓解一个数据库的压力 MySQL主从备份原理: Mysql的主从复制至少是需要两个Mysql的服务,当然Mysql的服务是可以分布在不同的服务器上,也可以在一台服务器上启动多个服务. 如果想配置成为同一台上的话,注意安装的时候,选择两个不同的prefix=路径,同时开启服务器的时候,端口不能相同. (1)首先确保主从服务器上的Mysql版本相同(做主从服务器的原则是,MYSQL版本要相同,如果不能满足,最起码从服务器的MYSQL的版本

随机推荐