海量数据处理系列之:用C++实现Bitmap算法

bitmap是一个十分有用的结构。所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素。由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省。
适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下
基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码
扩展:bloom filter可以看做是对bit-map的扩展
问题实例:
1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。
8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。
2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。
下面是一个简单的Bitmap的实现:


代码如下:

#include "stdafx.h"
#include <iostream>
using namespace std;
char *g_bitmap = NULL; 
int g_size = 0; 
int g_base = 0;
//功能:初始化bitmap
//参数: size:bitmap的大小,即bit位的个数
//      start:起始值
//返回值:0表示失败,1表示成功
int bitmap_init(int size, int start) 

 g_size = size/8+1;
 g_base = start;
 g_bitmap = new char[g_size]; 
 if(g_bitmap == NULL)
 {
  return 0; 
 }
 memset(g_bitmap, 0x0, g_size); 
 return 1; 

//功能:将值index的对应位设为1
//index:要设的值
//返回值:0表示失败,1表示成功
int bitmap_set(int index) 

     int quo = (index-g_base)/8 ;  //确定所在的字节
     int remainder = (index-g_base)%8;  //字节内的偏移 
     unsigned char x = (0x1<<remainder);   
     if( quo > g_size) 
          return 0;
     g_bitmap[quo] |= x;   //所在字节内的特定位置为1 
     return 1;  
}

//功能:取bitmap第i位的值
//i:待取位
//返回值:-1表示失败,否则返回对应位的值
int bitmap_get(int i) 

 int quo = (i)/8 ; 
 int remainder = (i)%8; 
 unsigned char x = (0x1<<remainder); 
 unsigned char res; 
 if( quo > g_size) 
  return -1; 
 res = g_bitmap[quo] & x; 
 return res > 0 ? 1 : 0;  
}

//功能:返回index位对应的值  
int bitmap_data(int index) 

 return (index + g_base); 

//释放内存
int bitmap_free() 

 delete [] g_bitmap;
 return 0;
}

int _tmain(int argc, _TCHAR* argv[])

 int a[] = {5,8,7,6,3,1,10,78,56,34,23,12,43,54,65,76,87,98,89,100}; 
    int i; 
 bitmap_init(100, 0); 
 for(i=0; i<20; i++)
 {
  bitmap_set(a[i]); 
 }
 for(i=0; i<=100; i++) 
 { 
  if(bitmap_get(i) > 0 ) 
   cout << bitmap_data(i)<< " ";
 } 
 cout << endl; 
 bitmap_free();
    return 0; 
}

【问题实例】
1)
已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。
8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。 (可以理解为从0-99 999 999的数字,每个数字对应一个Bit位,所以只需要99M个Bit==1.2MBytes,这样,就用了小小的1.2M左右的内存表示了所有的8位数的电话)
2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上,在遍历这些数的时候,如果对应位置的值是0,则将其置为1;如果是1,将其置为2;如果是2,则保持不变。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个 2bit-map,都是一样的道理。

(0)

相关推荐

  • 基于C++的农夫过河问题算法设计与实现方法

    本文实例讲述了基于C++的农夫过河问题算法设计与实现方法.分享给大家供大家参考,具体如下: 问题描述: 一个农夫带着-只狼.一只羊和-棵白菜,身处河的南岸.他要把这些东西全部运到北岸.他面前只有一条小船,船只能容下他和-件物品,另外只有农夫才能撑船.如果农夫在场,则狼不能吃羊,羊不能吃白菜,否则狼会吃羊,羊会吃白菜,所以农夫不能留下羊和白菜自己离开,也不能留下狼和羊自己离开,而狼不吃白菜.请求出农夫将所有的东西运过河的方案. 实现上述求解的搜索过程可以采用两种不同的策略:一种广度优先搜索,另一种

  • c++实现MD5算法实现代码

    测试结果和百度百科测试例子一致. 实现过程中需要注意事项:最后把四个变量A B C D 链接成结果时 ,注意变量高低位的先后顺序,具体参考 LinkResult()方法. md5.h #ifndef _MD5_H_ #define _MD5_H_ #include <iostream> #include <string> using namespace std; class MD5 { public: typedef unsigned char uchar8; //make sur

  • C++实现DES加密算法实例解析

    本文所述实例是一个实现DES加密算法的程序代码,在C++中,DES加密是比较常用的加密算法了,且应用非常广泛.本CPP类文件可满足你的DES加密需要,代码中附带了丰富的注释,相信对于大家理解DES可以起到很大的帮助. 具体实现代码如下: #include "memory.h" #include "stdio.h" enum {encrypt,decrypt};//ENCRYPT:加密,DECRYPT:解密 void des_run(char out[8],char

  • C++实现迷宫算法实例解析

    本文以实例形式描述了C++实现迷宫算法.本例中的迷宫是一个矩形区域,它有一个入口和一个出口.在迷宫的内部包含不能穿越的墙或障碍.障碍物沿着行和列放置,它们与迷宫的矩形边界平行.迷宫的入口在左上角,出口在右下角 本实例迷宫算法的功能主要有: 1.自动生成10*10迷宫图 2.判断是否有迷宫出口,并且画出路线图 具体实现代码如下: # include <iostream> # include <list> # include <sys/timeb.h> # include

  • C++堆排序算法的实现方法

    本文实例讲述了C++实现堆排序算法的方法,相信对于大家学习数据结构与算法会起到一定的帮助作用.具体内容如下: 首先,由于堆排序算法说起来比较长,所以在这里单独讲一下.堆排序是一种树形选择排序方法,它的特点是:在排序过程中,将L[n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当前无序区中选择关键字最大(或最小)的元素. 一.堆的定义 堆的定义如下:n个关键字序列L[n]成为堆,当且仅当该序列满足: ①L(i) <= L(2i)且L(i) <= L(2

  • C++归并排序算法实例

    归并排序 归并排序算法是采用分治法的一个非常典型的应用.归并排序的思想是将一个数组中的数都分成单个的:对于单独的一个数,它肯定是有序的,然后,我们将这些有序的单个数在合并起来,组成一个有序的数列.这就是归并排序的思想.它的时间复杂度为O(N*logN). 代码实现 复制代码 代码如下: #include <iostream> using namespace std;   //将有二个有序数列a[first...mid]和a[mid...last]合并. void mergearray(int

  • C++实现矩阵原地转置算法

    本文实例描述了C++实现矩阵原地转置算法,是一个非常经典的算法,相信对于学习C++算法的朋友有很大的帮助.具体如下: 一.问题描述 微软面试题:将一个MxN的矩阵存储在一个一维数组中,编程实现矩阵的转置. 要求:空间复杂度为O(1) 二.思路分析 下面以一个4x2的矩阵A={1,2,3,4,5,6,7,8}进行分析,转置过程如下图: 图中右下角的红色数字表示在一维数组中的下标.矩阵的转置其实就是数组中元素的移动,具体的移动过程如下图: 我们发现,这些移动的元素的下标是一个个环,下标1的元素移动到

  • C++实现简单遗传算法

    本文实例讲述了C++实现简单遗传算法.分享给大家供大家参考.具体实现方法如下: //遗传算法 GA #include<iostream> #include <cstdlib> #include<bitset> using namespace std; const int L=5; //定义编码的长度 int f(int x) //定义测设函数f(x) { int result; result=x*x*x-60*x*x+900*x+100; return result;

  • C++三色球问题描述与算法分析

    本文实例讲述了C++三色球问题.分享给大家供大家参考,具体如下: /* * 作 者:刘同宾 * 完成日期:2012 年 11 月 15 日 * 版 本 号:v1.0 * * 输入描述: * 问题描述:三色球问题:若一个口袋中放有12个球,其中有3个红的.3个白的和6个黒的,问从中任取8个共有多少种不同的颜色搭配? * 提示: 设任取的红球个数为i,白球个数为j,则黒球个数为8-i-j,根据题意红球和白球个数的取值范围是0~3, * 在红球和白球个数确定的条件下,黒球个数取值应为8-i-j<=6.

  • 采用C++实现区间图着色问题(贪心算法)实例详解

    本文所述算法即假设要用很多个教室对一组活动进行调度.我们希望使用尽可能少的教室来调度所有活动.采用C++的贪心算法,来确定哪一个活动使用哪一间教室. 对于这个问题也常被称为区间图着色问题,即相容的活动着同色,不相容的着不同颜色,使得所用颜色数最少. 具体实现代码如下: //贪心算法 #include "stdafx.h" #include<iostream> #define N 100 using namespace std; struct Activity { int n

  • 基于一致性hash算法 C++语言的实现详解

    一致性hash算法实现有两个关键问题需要解决,一个是用于结点存储和查找的数据结构的选择,另一个是结点hash算法的选择. 首先来谈一下一致性hash算法中用于存储结点的数据结构.通过了解一致性hash的原理,我们知道结点可以想象为是存储在一个环形的数据结构上(如下图),结点A.B.C.D按hash值在环形分布上是有序的,也就是说结点可以按hash值存储在一个有序的队列里.如下图所示,当一个hash值为-2^20的请求点P查找路由结点时,一致性hash算法会按hash值的顺时针方向路由到第一个结点

随机推荐