python异步任务队列示例

很多场景为了不阻塞,都需要异步回调机制。这是一个简单的例子,大家参考使用吧

代码如下:

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import logging
import queue
import threading

def func_a(a, b):
    return a + b

def func_b():
    pass

def func_c(a, b, c):
    return a, b, c

# 异步任务队列
_task_queue = queue.Queue()

def async_call(function, callback, *args, **kwargs):
    _task_queue.put({
        'function': function,
        'callback': callback,
        'args': args,
        'kwargs': kwargs
    })

def _task_queue_consumer():
    """
    异步任务队列消费者
    """
    while True:
        try:
            task = _task_queue.get()
            function = task.get('function')
            callback = task.get('callback')
            args = task.get('args')
            kwargs = task.get('kwargs')
            try:
                if callback:
                    callback(function(*args, **kwargs))
            except Exception as ex:
                if callback:
                    callback(ex)
            finally:
                _task_queue.task_done()
        except Exception as ex:
            logging.warning(ex)

def handle_result(result):
    print(type(result), result)

if __name__ == '__main__':
    t = threading.Thread(target=_task_queue_consumer)
    t.daemon = True
    t.start()

async_call(func_a, handle_result, 1, 2)
    async_call(func_b, handle_result)
    async_call(func_c, handle_result, 1, 2, 3)
    async_call(func_c, handle_result, 1, 2, 3, 4)

_task_queue.join()

(0)

相关推荐

  • Python实现队列的方法

    本文实例讲述了Python实现队列的方法.分享给大家供大家参考.具体实现方法如下: #!/usr/bin/env python queue = [] def enQ(): queue.append(raw_input('Enter new string: ').strip()) #调用list的列表的pop()函数.pop(0)为列表的第一个元素 def deQ(): if len(queue) == 0: print 'Cannot pop from an empty queue!' else

  • Python实现优先级队列结构的方法详解

    最简单的实现 一个队列至少满足2个方法,put和get. 借助最小堆来实现. 这里按"值越大优先级越高"的顺序. #coding=utf-8 from heapq import heappush, heappop class PriorityQueue: def __init__(self): self._queue = [] def put(self, item, priority): heappush(self._queue, (-priority, item)) def get(

  • Python优先队列实现方法示例

    本文实例讲述了Python优先队列实现方法.分享给大家供大家参考,具体如下: 1. 代码 import Queue import threading class Job(object): def __init__(self, priority, description): self.priority = priority self.description = description print 'New job:', description return def __cmp__(self, ot

  • python计算最小优先级队列代码分享

    复制代码 代码如下: # -*- coding: utf-8 -*- class Heap(object): @classmethod    def parent(cls, i):        """父结点下标"""        return int((i - 1) >> 1); @classmethod    def left(cls, i):        """左儿子下标""

  • python计算最大优先级队列实例

    复制代码 代码如下: # -*- coding: utf-8 -*- class Heap(object): @classmethod    def parent(cls, i):        """父结点下标"""        return int((i - 1) >> 1); @classmethod    def left(cls, i):        """左儿子下标""

  • Python实现的数据结构与算法之队列详解

    本文实例讲述了Python实现的数据结构与算法之队列.分享给大家供大家参考.具体分析如下: 一.概述 队列(Queue)是一种先进先出(FIFO)的线性数据结构,插入操作在队尾(rear)进行,删除操作在队首(front)进行. 二.ADT 队列ADT(抽象数据类型)一般提供以下接口: ① Queue() 创建队列 ② enqueue(item) 向队尾插入项 ③ dequeue() 返回队首的项,并从队列中删除该项 ④ empty() 判断队列是否为空 ⑤ size() 返回队列中项的个数 队

  • Python多线程和队列操作实例

    Python3,开一个线程,间隔1秒把一个递增的数字写入队列,再开一个线程,从队列中取出数字并打印到终端 复制代码 代码如下: #! /usr/bin/env python3 import time import threading import queue # 一个线程,间隔一定的时间,把一个递增的数字写入队列 # 生产者 class Producer(threading.Thread): def __init__(self, work_queue):         super().__in

  • Python3中多线程编程的队列运作示例

    Python3,开一个线程,间隔1秒把一个递增的数字写入队列,再开一个线程,从队列中取出数字并打印到终端 #! /usr/bin/env python3 import time import threading import queue # 一个线程,间隔一定的时间,把一个递增的数字写入队列 # 生产者 class Producer(threading.Thread): def __init__(self, work_queue): super().__init__() # 必须调用 self.

  • Python实现简单多线程任务队列

    最近我在用梯度下降算法绘制神经网络的数据时,遇到了一些算法性能的问题.梯度下降算法的代码如下(伪代码): def gradient_descent(): # the gradient descent code plotly.write(X, Y) 一般来说,当网络请求 plot.ly 绘图时会阻塞等待返回,于是也会影响到其他的梯度下降函数的执行速度. 一种解决办法是每调用一次 plotly.write 函数就开启一个新的线程,但是这种方法感觉不是很好. 我不想用一个像 cerely(一种分布式任

  • python实现堆栈与队列的方法

    本文实例讲述了python实现堆栈与队列的方法.分享给大家供大家参考.具体分析如下: 1.python实现堆栈,可先将Stack类写入文件stack.py,在其它程序文件中使用from stack import Stack,然后就可以使用堆栈了. stack.py的程序: 复制代码 代码如下: class Stack():      def __init__(self,size):          self.size=size;          self.stack=[];         

随机推荐