老生常谈Python序列化和反序列化

通过将对象序列化可以将其存储在变量或者文件中,可以保存当时对象的状态,实现其生命周期的延长。并且需要时可以再次将这个对象读取出来。Python中有几个常用模块可实现这一功能。

pickle模块

存储在变量中

dumps(obj)返回存入的字节

dic = {'age': 23, 'job': 'student'}
byte_data = pickle.dumps(dic)
# out -> b'\x80\x03}q\x00(X\x03\x00\x00\...'
print(byte_data)

读取数据

数据以字节保存在了byte_data变量中,需要再次使用的时候使用loads函数就行了。

obj = pickle.loads(byte_data)
print(obj)

存储在文件中

也可以存在文件中,使得对象持久化。使用的是dump和load函数,注意和上面的区别,少了s。由于pickle写入的是二进制数据,所以打开方式需要以wb和rb的模式。

# 序列化
with open('abc.pkl', 'wb') as f:
  dic = {'age': 23, 'job': 'student'}
  pickle.dump(dic, f)
# 反序列化
with open('abc.pkl', 'rb') as f:
  aa = pickle.load(f)
  print(aa)
  print(type(aa)) # <class 'dict'>

序列化用户自定义对象

假如我写了个类叫做Person

class Person:
  def __init__(self, name, age, job):
    self.name = name
    self.age = age
    self.job = job

  def work(self):
    print(self.name, 'is working...')

pickle当然也能写入,不仅可以写入类本身,也能写入它的一个实例。

# 将实例存储在变量中,当然也能存在文件中
a_person = Person('abc', 22, 'waiter')
person_abc = pickle.dumps(a_person)
p = pickle.loads(person_abc)
p.work()
# 将类本身存储在变量中,loads的时候返回类本身,而非它的一个实例
class_Person = pickle.dumps(Person)
Person = pickle.loads(class_Person)
p = Person('Bob', 23, 'Student')
p.work()

# 下面这个例子演示的就是将类存储在文件中
# 序列化
with open('person.pkl', 'wb') as f:
  pickle.dump(Person, f)
# 反序列化
with open('person.pkl', 'rb') as f:
  Person = pickle.load(f)
  aa = Person('gg', 23, '6')
  aa.work()

json模块

pickle可以很方便地序列化所有对象。不过json作为更为标准的格式,具有更好的可读性(pickle是二进制数据)和跨平台性。是个不错的选择。

json使用的四个函数名和pickle一致。

序列化为字符串

dic = {'age': 23, 'job': 'student'}
dic_str = json.dumps(dic)
print(type(dic_str), dic_str)
# out: <class 'str'> {"age": 23, "job": "student"}

dic_obj = json.loads(dic_str)
print(type(dic_obj), dic_obj)
# out: <class 'dict'> {'age': 23, 'job': 'student'}

可以看到,dumps函数将对象转换成了字符串。loads函数又将其恢复成字典。

存储为json文件

也可以存储在json文件中

dic = {'age': 23, 'job': 'student'}
with open('abc.json', 'w', encoding='utf-8') as f:
  json.dump(dic, f)

with open('abc.json', encoding='utf-8') as f:
  obj = json.load(f)
  print(obj)

存储自定义对象

还是上面的Person对象。如果直接序列化会报错

aa = Person('Bob', 23, 'Student')
with open('abc.json', 'w', encoding='utf-8') as f:
  json.dump(aa, f) # 报错

Object of type 'Person' is not JSON serializable此时dump函数里传一个参default就可以了,这个参数接受一个函数,这个函数可以将对象转换为字典。

写一个就是了

def person2dict(person):
  return {'name': person.name,
      'age': person.age,
      'job': person.job}

这样返回的就是一个字典了,对象实例有个方法可以简化这一过程。直接调用实例的__dict__。例如

print(aa.__dict) # {'name': 'Bob', 'age': 23, 'job': 'Student'}

很方便。

同时在读取的时候load出来的是一个字典,再转回对象就可,同样需要一个object_hook参数,该参数接收一个函数,用于将字典转为对象。

def dict2person(dic):
  return Person(dic['name'], dic['age'], dic['job'])

于是完整的程序应该写成下面这样

with open('abc.json', 'w', encoding='utf-8') as f:
  json.dump(aa, f, default=person2dict)

with open('abc.json', encoding='utf-8') as f:
  obj = json.load(f, object_hook=dict2person)
  print(obj.name, obj.age, obj.job)
  obj.work()

由于可以使用__dict__代替person2dict函数,再使用lambda函数简化。

with open('abc.json', 'w', encoding='utf-8') as f:
  json.dump(aa, f, default=lambda obj: obj.__dict__)

以上是存储到文件,存储到变量也是类似操作。

不过就我现在所学,不知道如何像pickle一样方便的将我们自定义的类本身使用json序列化,或许要用到其他扩展函数。以后用到了再说。

shelve模块

还有一个模块,不太常用,通常使用一个open就好。shelve以键值对的形式存储数据。

with shelve.open('aa') as f:
  f['person'] = {'age': 23, 'job': 'student'}
  f['person']['age'] = 44 # 这里试图改变原来的年龄23
  f['numbers'] = [i for i in range(10)]

with shelve.open('aa') as f:
  person = f['person']
  print(person) # {'age': 23, 'job': 'student'}
  nums = f['numbers']
  print(nums) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

文件不要有后缀名,在windows下会生成aa.bak, aa.dat, aa.dir三个文件(有点多)。其中bak和dir文件是可以查看的(貌似两个文件内容一样)在下面这个例子中生成这样的数据。

'person', (0, 44)
'numbers', (512, 28)

允许写回--writeback

有个细节,我们读取键person时候,发现age还是23岁,f['person']['age'] = 44后并没有变成44。下面的写法

with shelve.open('aa', writeback=True) as f:
  dic = {'age': 23, 'job': 'student'}
  f['person'] = dic
  dic['age'] = 44
  f['person'] = dic

相当于赋值了两次,这种方法是可以改变值的。

默认情况下直接使用f['person']改变其中的值之后,不会更新已存储的值,也就是没有把更新写回到文件,即使是文件被close后。如果有此需要,在open函数中添加一个参数writeback=True。再次运行下看看年龄就被改变了。

写入自定义对象

依然使用上面的Person对象

with shelve.open('aa') as f:
  f['class'] = Person

# 写入类本身
with shelve.open('aa') as f:
  Person = f['class']
  a = Person('Bob', 23, 'Student')
  a.work()

上面的例子说明shelve也可以序列化类本身。当然序列化实例肯定可以。

with shelve.open('aa') as f:
  a = Person('God', 100, 'watch')
  f['class'] = a

with shelve.open('aa') as f:
  god = f['class']
  god.work()

注意,由于我们使用with open打开,故不用写close语句,此模块是有close函数的,如果不是with方法打开的一定要记得主动close。

以上这篇老生常谈Python序列化和反序列化就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python3序列化与反序列化用法实例

    本文实例讲述了python3序列化与反序列化用法.分享给大家供大家参考.具体如下: #coding=utf-8 import pickle aa={} aa["title"]="我是好人" aa["num"]=2 t=pickle.dumps(aa)#序列化这个字典 print(t) f=pickle.loads(t)#反序列化,还原原来的状态 print(f) 运行结果如下: (dp0 S'num' p1 I2 sS'title' p2 S'\

  • 详解Python中的序列化与反序列化的使用

    学习过marshal模块用于序列化和反序列化,但marshal的功能比较薄弱,只支持部分内置数据类型的序列化/反序列化,对于用户自定义的类型就无能为力,同时marshal不支持自引用(递归引用)的对象的序列化.所以直接使用marshal来序列化/反序列化可能不是很方便.还好,python标准库提供了功能更加强大且更加安全的pickle和cPickle模块. cPickle模块是使用C语言实现的,所以在运行效率上比pickle要高.但是cPickle模块中定义的类型不能被继承(其实大多数时候,我们

  • Python pickle类库介绍(对象序列化和反序列化)

    一.pickle pickle模块用来实现python对象的序列化和反序列化.通常地pickle将python对象序列化为二进制流或文件.   python对象与文件之间的序列化和反序列化: 复制代码 代码如下: pickle.dump() pickle.load() 如果要实现python对象和字符串间的序列化和反序列化,则使用: 复制代码 代码如下: pickle.dumps() pickle.loads() 可以被序列化的类型有: * None,True 和 False; * 整数,浮点数

  • 老生常谈Python序列化和反序列化

    通过将对象序列化可以将其存储在变量或者文件中,可以保存当时对象的状态,实现其生命周期的延长.并且需要时可以再次将这个对象读取出来.Python中有几个常用模块可实现这一功能. pickle模块 存储在变量中 dumps(obj)返回存入的字节 dic = {'age': 23, 'job': 'student'} byte_data = pickle.dumps(dic) # out -> b'\x80\x03}q\x00(X\x03\x00\x00\...' print(byte_data)

  • Python序列化与反序列化pickle用法实例

    这篇文章主要介绍了Python序列化与反序列化pickle用法实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 要将Python对象作为一个文件的形式保存到磁盘,就叫序列化: 当我们需要用到这个这对象,再从磁盘加载这个对象,就叫反序列化 Python自带的pickle可以帮我们实现,pickle这个单词是咸菜的意思,咸菜耐储存,是不是很形象呀? 对象的存储分为两步: 1.将对象在内存中的数据抓取取来,转换成一个有序的文本,这一步就是序列化 2

  • Python 序列化和反序列化库 MarshMallow 的用法实例代码

    序列化(Serialization)与反序列化(Deserialization)是RESTful API 开发中绕不开的一环,开发时,序列化与反序列化的功能实现中通常也会包含数据校验(Validation)相关的业务逻辑. Marshmallow 是一个强大的轮子,很好的实现了 object -> dict , objects -> list, string -> dict和 string -> list. Marshmallow is an ORM/ODM/framework-a

  • 浅析Python 序列化与反序列化

    序列化是将对象的状态信息转换为可以存储或传输的形式的过程.在序列化期间,对象将其当前状态(存在内存中)写入到临时或持久性存储区(硬盘).以后,可以通过从存储区中读取或反序列化对象的状态,重新创建该对象. 实现对象的序列化和反序列化在python中有两种方式:json 和 pickle. 其中json用于字符串 和 python数据类型间进行转换,pickle用于python特有的类型 和 python的数据类型间进行转换,pickle是python特有的. 1.JSON序列化:json.dump

  • Python序列化与反序列化相关知识总结

    Python序列化与反序列 在程序运行的过程中,所有的变量都是在内存中,比如,定义一个 dict: d = dict(name='Bob', age=20, score=88) 可以随时修改变量,比如把 name 改成 'Bill',但是一旦程序结束,变量所占用的内存就被操作系统全部回收.如果没有把修改后的 'Bill' 存储到磁盘上,下次重新运行程序,变量又被初始化为 'Bob'. 我们把变量从内存中变成可存储或传输的过程称之为序列化,在 Python 中叫 pickling,在其他语言中也被

  • Python Json序列化与反序列化的示例

    不同的编程语言有不同的数据类型; 比如说: Python的数据类型有(dict.list.string.int.float.long.bool.None) Java的数据类型有(bool.char.byte.short.int.long.float.double) C的数据类型有(bit.bool.char.int.short.long.unsigned.double.float) Tcl的数据类型(int.bool.float.string) Ruby的数据类型(Number.String.R

  • Python实现JSON反序列化类对象的示例

    我们的网络协议一般是把数据转换成JSON之后再传输.之前在Java里面,实现序列化和反序列化,不管是 jackson ,还是 fastjson 都非常的简单.现在有项目需要用Python来开发,很自然的希望这样的便利也能在Python中体现. 但是在网上看了一些教程,讲反序列化的时候,基本都是转换为 dict 或者 array .这种编程方式我从情感上是无法接受的.难道是这些JSON库都不支持反序列化为类对象?我马上打消了这个念头,Python这样强大的脚本语言,不可能没有完善的JSON库. 于

  • Python使用pickle进行序列化和反序列化的示例代码

    一.说明 早上看到Python使用pickle进行序列化和反序列化,然后发现面临的一个获取不到返回值的框架,似乎可以通过在框架中先序列化,然后在外部进行反序列化的方法来实现.就研究了一下pickle库的具体使用. 本身也没什么复杂,一方面还是怕忘记,另一方面是自从学Java听到反序化这个词开始就有一种莫明其妙的恐具感总觉得是什么高大上的东西.Java反序列化可参见"Java反序列化漏洞实现". 二.代码实现 import pickle class BeSerializing: def

  • Python使用protobuf序列化和反序列化的实现

    protobuf介绍 protobuf是一种二进制的序列化格式,相对于json来说体积更小,传输更快. 安装protobuf 安装protobuf的目的主要用来将proto文件编译成python.c.Java可调用的接口. # 如果gcc版本较低,需要升级gcc wget https://main.qcloudimg.com/raw/d7810aaf8b3073fbbc9d4049c21532aa/protobuf-2.6.1.tar.gz tar -zxvf protobuf-2.6.1.ta

  • 详解Python 序列化Serialize 和 反序列化Deserialize

    详解Python 序列化Serialize 和 反序列化Deserialize 序列化 (serialization) 序列化是将对象状态转换为可保持或传输的格式的过程.与序列化相对的是反序列化, 它将流转换为对象.这两个过程结合起来,可以轻松地存储和传输数据. 序列化和反序列化的目的 1.以某种存储形式使自定义对象持久化: 2.将对象从一个地方传递到另一个地方. 3.使程序更具维护性 序列化   由于存在于内存中的对象都是暂时的,无法长期驻存,为了把对象的状态保持下来,这时需要把对象写入到磁盘

随机推荐