深度解析Java中volatile的内存语义实现以及运用场景

volatile内存语义的实现

下面,让我们来看看JMM如何实现volatile写/读的内存语义。

前文我们提到过重排序分为编译器重排序和处理器重排序。为了实现volatile内存语义,JMM会分别限制这两种类型的重排序类型。下面是JMM针对编译器制定的volatile重排序规则表:

举例来说,第三行最后一个单元格的意思是:在程序顺序中,当第一个操作为普通变量的读或写时,如果第二个操作为volatile写,则编译器不能重排序这两个操作。

从上表我们可以看出:

当第二个操作是volatile写时,不管第一个操作是什么,都不能重排序。这个规则确保volatile写之前的操作不会被编译器重排序到volatile写之后。
当第一个操作是volatile读时,不管第二个操作是什么,都不能重排序。这个规则确保volatile读之后的操作不会被编译器重排序到volatile读之前。
当第一个操作是volatile写,第二个操作是volatile读时,不能重排序。
为了实现volatile的内存语义,编译器在生成字节码时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。对于编译器来说,发现一个最优布置来最小化插入屏障的总数几乎不可能,为此,JMM采取保守策略。下面是基于保守策略的JMM内存屏障插入策略:

  • 在每个volatile写操作的前面插入一个StoreStore屏障。
  • 在每个volatile写操作的后面插入一个StoreLoad屏障。
  • 在每个volatile读操作的后面插入一个LoadLoad屏障。
  • 在每个volatile读操作的后面插入一个LoadStore屏障。

上述内存屏障插入策略非常保守,但它可以保证在任意处理器平台,任意的程序中都能得到正确的volatile内存语义。

下面是保守策略下,volatile写插入内存屏障后生成的指令序列示意图:

上图中的StoreStore屏障可以保证在volatile写之前,其前面的所有普通写操作已经对任意处理器可见了。这是因为StoreStore屏障将保障上面所有的普通写在volatile写之前刷新到主内存。

这里比较有意思的是volatile写后面的StoreLoad屏障。这个屏障的作用是避免volatile写与后面可能有的volatile读/写操作重排序。因为编译器常常无法准确判断在一个volatile写的后面,是否需要插入一个StoreLoad屏障(比如,一个volatile写之后方法立即return)。为了保证能正确实现volatile的内存语义,JMM在这里采取了保守策略:在每个volatile写的后面或在每个volatile读的前面插入一个StoreLoad屏障。从整体执行效率的角度考虑,JMM选择了在每个volatile写的后面插入一个StoreLoad屏障。因为volatile写-读内存语义的常见使用模式是:一个写线程写volatile变量,多个读线程读同一个volatile变量。当读线程的数量大大超过写线程时,选择在volatile写之后插入StoreLoad屏障将带来可观的执行效率的提升。从这里我们可以看到JMM在实现上的一个特点:首先确保正确性,然后再去追求执行效率。

下面是在保守策略下,volatile读插入内存屏障后生成的指令序列示意图:

上图中的LoadLoad屏障用来禁止处理器把上面的volatile读与下面的普通读重排序。LoadStore屏障用来禁止处理器把上面的volatile读与下面的普通写重排序。

上述volatile写和volatile读的内存屏障插入策略非常保守。在实际执行时,只要不改变volatile写-读的内存语义,编译器可以根据具体情况省略不必要的屏障。下面我们通过具体的示例代码来说明:

class VolatileBarrierExample {
  int a;
  volatile int v1 = 1;
  volatile int v2 = 2;

  void readAndWrite() {
    int i = v1;      //第一个volatile读
    int j = v2;      // 第二个volatile读
    a = i + j;      //普通写
    v1 = i + 1;     // 第一个volatile写
    v2 = j * 2;     //第二个 volatile写
  }

  …          //其他方法
}

针对readAndWrite()方法,编译器在生成字节码时可以做如下的优化:

注意,最后的StoreLoad屏障不能省略。因为第二个volatile写之后,方法立即return。此时编译器可能无法准确断定后面是否会有volatile读或写,为了安全起见,编译器常常会在这里插入一个StoreLoad屏障。

上面的优化是针对任意处理器平台,由于不同的处理器有不同“松紧度”的处理器内存模型,内存屏障的插入还可以根据具体的处理器内存模型继续优化。以x86处理器为例,上图中除最后的StoreLoad屏障外,其它的屏障都会被省略。

前面保守策略下的volatile读和写,在 x86处理器平台可以优化成:

前文提到过,x86处理器仅会对写-读操作做重排序。X86不会对读-读,读-写和写-写操作做重排序,因此在x86处理器中会省略掉这三种操作类型对应的内存屏障。在x86中,JMM仅需在volatile写后面插入一个StoreLoad屏障即可正确实现volatile写-读的内存语义。这意味着在x86处理器中,volatile写的开销比volatile读的开销会大很多(因为执行StoreLoad屏障开销会比较大)。

JSR-133为什么要增强volatile的内存语义

在JSR-133之前的旧Java内存模型中,虽然不允许volatile变量之间重排序,但旧的Java内存模型允许volatile变量与普通变量之间重排序。在旧的内存模型中,VolatileExample示例程序可能被重排序成下列时序来执行:

在旧的内存模型中,当1和2之间没有数据依赖关系时,1和2之间就可能被重排序(3和4类似)。其结果就是:读线程B执行4时,不一定能看到写线程A在执行1时对共享变量的修改。

因此在旧的内存模型中 ,volatile的写-读没有监视器的释放-获所具有的内存语义。为了提供一种比监视器锁更轻量级的线程之间通信的机制,JSR-133专家组决定增强volatile的内存语义:严格限制编译器和处理器对volatile变量与普通变量的重排序,确保volatile的写-读和监视器的释放-获取一样,具有相同的内存语义。从编译器重排序规则和处理器内存屏障插入策略来看,只要volatile变量与普通变量之间的重排序可能会破坏volatile的内存语意,这种重排序就会被编译器重排序规则和处理器内存屏障插入策略禁止。

由于volatile仅仅保证对单个volatile变量的读/写具有原子性,而监视器锁的互斥执行的特性可以确保对整个临界区代码的执行具有原子性。在功能上,监视器锁比volatile更强大;在可伸缩性和执行性能上,volatile更有优势。如果读者想在程序中用volatile代替监视器锁,请一定谨慎。

使用volatile关键字的场景

  synchronized关键字是防止多个线程同时执行一段代码,那么就会很影响程序执行效率,而volatile关键字在某些情况下性能要优于synchronized,但是要注意volatile关键字是无法替代synchronized关键字的,因为volatile关键字无法保证操作的原子性。通常来说,使用volatile必须具备以下2个条件:

  1)对变量的写操作不依赖于当前值

  2)该变量没有包含在具有其他变量的不变式中

  实际上,这些条件表明,可以被写入 volatile 变量的这些有效值独立于任何程序的状态,包括变量的当前状态。

  事实上,我的理解就是上面的2个条件需要保证操作是原子性操作,才能保证使用volatile关键字的程序在并发时能够正确执行。

  下面列举几个Java中使用volatile的几个场景。

1.状态标记量

volatile boolean flag = false;

while(!flag){
 doSomething();
}

public void setFlag() {
 flag = true;
}

volatile boolean inited = false;
//线程1:
context = loadContext();
inited = true;   

//线程2:
while(!inited ){
sleep()
}
doSomethingwithconfig(context);

2.double check

class Singleton{
 private volatile static Singleton instance = null;

 private Singleton() {

 }

 public static Singleton getInstance() {
  if(instance==null) {
   synchronized (Singleton.class) {
    if(instance==null)
     instance = new Singleton();
   }
  }
  return instance;
 }
}
(0)

相关推荐

  • 深入解析Java中volatile关键字的作用

    在java线程并发处理中,有一个关键字volatile的使用目前存在很大的混淆,以为使用这个关键字,在进行多线程并发处理的时候就可以万事大吉. Java语言是支持多线程的,为了解决线程并发的问题,在语言内部引入了 同步块 和 volatile 关键字机制. synchronized 同步块大家都比较熟悉,通过 synchronized 关键字来实现,所有加上synchronized 和 块语句,在多线程访问的时候,同一时刻只能有一个线程能够用synchronized 修饰的方法 或者 代码块.

  • java多线程中的volatile和synchronized用法分析

    本文实例分析了java多线程中的volatile和synchronized用法.分享给大家供大家参考.具体实现方法如下: 复制代码 代码如下: package com.chzhao; public class Volatiletest extends Thread { private static int count = 0; public void run() {         count++;     } public static void main(String[] args) {  

  • 详解Java线程编程中的volatile关键字的作用

    1.volatile关键字的两层语义 一旦一个共享变量(类的成员变量.类的静态成员变量)被volatile修饰之后,那么就具备了两层语义: 1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的. 2)禁止进行指令重排序. 先看一段代码,假如线程1先执行,线程2后执行: //线程1 boolean stop = false; while(!stop){ doSomething(); } //线程2 stop = true; 这段代码是很典型

  • volatile可见性的一些认识和论证

    一.前言 volatile的关键词的使用在JVM内存模型中已是老生常谈了,这篇文章主要结合自己对可见性的一些认识和一些直观的例子来谈谈volatile.文章正文大致分为三部分,首先会介绍一下happen-before,接着讲解volatile的一些使用场景,最后会附上一些例子来论证使用与不使用volatile的区别. 二.happen-before 对操作系统有认识的同学一定知道,CPU一般有三级缓存,在与内存交互的时候,存在缓存与内存的更新问题,其次CPU在读取指令的时候,会做一些指令重排序的

  • Java中volatile关键字的作用与用法详解

    volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以重获生机. volatile 关键字作用是,使系统中所有线程对该关键字修饰的变量共享可见,可以禁止线程的工作内存对volatile修饰的变量进行缓存. volatile 2个使用场景: 1.可见性:Java提供了volatile关键字来保证可见性. 当一个共享变量被volatile修饰时,它会保证修

  • 深度解析Java中volatile的内存语义实现以及运用场景

    volatile内存语义的实现 下面,让我们来看看JMM如何实现volatile写/读的内存语义. 前文我们提到过重排序分为编译器重排序和处理器重排序.为了实现volatile内存语义,JMM会分别限制这两种类型的重排序类型.下面是JMM针对编译器制定的volatile重排序规则表: 举例来说,第三行最后一个单元格的意思是:在程序顺序中,当第一个操作为普通变量的读或写时,如果第二个操作为volatile写,则编译器不能重排序这两个操作. 从上表我们可以看出: 当第二个操作是volatile写时,

  • 深度理解Java中volatile的内存语义

    volatile可见性实验 举个栗子 我这里开了两个线程,后面的线程去修改volatile变量,前面的线程不断获取volatile变量, 结果是会一致卡在死循环,控制台没有任何输出 假如将flag让volatile来进行修饰 结果是:三秒后,就不会不断打印出信息出来 注意,Thread.sleep是会刷新线程内存的,所以不要使用Thread.sleep来分别让一个线程获取两次volatile变量 volatile的特性 volatile其实相当于对变量的单词读或写操作加了锁.做了同步 由于是加了

  • 解析java中volatile关键字

    在java多线程编程中经常volatile,有时候这个关键字和synchronized 或者lock经常有人混淆,具体解析如下: 在多线程的环境中会存在成员变量可见性问题: java的每个线程都存在一个线程栈的内存空间,该内存空间保存了该线程运行时的变量信息,当线程访问某一个变量值的时候首先会根据这个变量的地址找到对象的堆内存或者是栈堆存(原生数据类型)中的具体的内容,然后把这个内同赋值一个副本保存在本线程的线程栈中,紧接着对这个变量的一切操作在线程完成退出之前都和堆栈内存中的变量内容是没有关系

  • 并发编程之Java内存模型volatile的内存语义

    1.volatile的特性 理解volatile特性的一个好办法是把对volatile变量的单个读/写,看成是使用同一个锁对单个读/写操作做了同步. 代码示例: package com.lizba.p1; /** * <p> * volatile示例 * </p> * * @Author: Liziba * @Date: 2021/6/9 21:34 */ public class VolatileFeatureExample { /** 使用volatile声明64位的long型

  • 谈谈Java中Volatile关键字的理解

    volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以重获生机.volatile关键字虽然从字面上理解起来比较简单,但是要用好不是一件容易的事情. 一.前言 JMM提供了volatile变量定义.final.synchronized块来保证可见性. 用volatile修饰的变量,线程在每次使用变量的时候,都会读取变量修改后的最的值.volatile很容

  • Java中Volatile关键字详解及代码示例

    一.基本概念 先补充一下概念:Java内存模型中的可见性.原子性和有序性. 可见性: 可见性是一种复杂的属性,因为可见性中的错误总是会违背我们的直觉.通常,我们无法确保执行读操作的线程能适时地看到其他线程写入的值,有时甚至是根本不可能的事情.为了确保多个线程之间对内存写入操作的可见性,必须使用同步机制. 可见性,是指线程之间的可见性,一个线程修改的状态对另一个线程是可见的.也就是一个线程修改的结果.另一个线程马上就能看到.比如:用volatile修饰的变量,就会具有可见性.volatile修饰的

  • 深入了解Java中Volatile关键字

    一.基本概念 先补充一下概念:Java 内存模型中的可见性.原子性和有序性. 可见性: 可见性是一种复杂的属性,因为可见性中的错误总是会违背我们的直觉.通常,我们无法确保执行读操作的线程能适时地看到其他线程写入的值,有时甚至是根本不可能的事情.为了确保多个线程之间对内存写入操作的可见性,必须使用同步机制. 可见性,是指线程之间的可见性,一个线程修改的状态对另一个线程是可见的.也就是一个线程修改的结果.另一个线程马上就能看到.比如:用volatile修饰的变量,就会具有可见性.volatile修饰

  • 解析Java中的static关键字

    一.static关键字使用场景 static关键字主要有以下5个使用场景: 1.1.静态变量 把一个变量声明为静态变量通常基于以下三个目的: 作为共享变量使用 减少对象的创建 保留唯一副本 第一种比较容易理解,由于static变量在内存中只会存在一个副本,所以其可以作为共享变量使用,比如要定义一个全局配置.进行全局计数.如: public class CarConstants { // 全局配置,一般全局配置会和final一起配合使用, 作为共享变量 public static final in

  • Java中volatile关键字的作用

    目录 一.volatile作用 二.什么是可见性 三.什么是总线锁和缓存锁 四.什么是指令重排序 一.volatile作用 可以保证多线程环境下共享变量的可见性 通过增加内存屏障防止多个指令之间的重排序 二.什么是可见性 可见性是指当一个线程对于共享变量的修改,其他线程可以立刻看到修改之后的一个值,可见性本质上由几个方面造成的 cpu层面的高速缓存,在cpu里面呢设计了三级缓存去解决cpu运算效率和内存IO效率的问题,但是它也带来缓存一致性的一个问题,而在多线程执行的情况下呢,缓存一致性的问题就

随机推荐