Python多线程原理与用法实例剖析

本文实例讲述了Python多线程原理与用法。分享给大家供大家参考,具体如下:

先来看个栗子:

下面来看一下I/O秘籍型的线程,举个栗子——爬虫,下面是爬下来的图片用4个线程去写文件

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import re
import urllib
import threading
import Queue
import timeit
def getHtml(url):
  html_page = urllib.urlopen(url).read()
  return html_page
# 提取网页中图片的URL
def getUrl(html):
  pattern = r'src="(http://img.*?)"' # 正则表达式
  imgre = re.compile(pattern)
  imglist = re.findall(imgre, html) # re.findall(pattern,string) 在string中寻找所有匹配成功的字符串,以列表形式返回值
  return imglist
class getImg(threading.Thread):
  def __init__(self, queue, thread_name=0): # 线程公用一个队列
    threading.Thread.__init__(self)
    self.queue = queue
    self.thread_name = thread_name
    self.start() # 启动线程
  # 使用队列实现进程间通信
  def run(self):
    global count
    while (True):
      imgurl = self.queue.get() # 调用队列对象的get()方法从队头删除并返回一个项目
      urllib.urlretrieve(imgurl, 'E:\mnt\girls\%s.jpg' % count)
      count += 1
      if self.queue.empty():
        break
      self.queue.task_done() # 当使用者线程调用 task_done() 以表示检索了该项目、并完成了所有的工作时,那么未完成的任务的总数就会减少。
imglist = []
def main():
  global imglist
  url = "http://huaban.com/favorite/beauty/" # 要爬的网页地址
  html = getHtml(url)
  imglist = getUrl(html)
def main_1():
  global count
  threads = []
  count = 0
  queue = Queue.Queue()
  # 将所有任务加入队列
  for img in imglist:
    queue.put(img)
  # 多线程爬去图片
  for i in range(4):
    thread = getImg(queue, i)
    threads.append(thread)
  # 阻塞线程,直到线程执行完成
  for thread in threads:
    thread.join()
if __name__ == '__main__':
  main()
  t = timeit.Timer(main_1)
  print t.timeit(1)

4个线程的执行耗时为:0.421320716723秒

修改一下main_1换成单线程的:

def main_1():
  global count
  threads = []
  count = 0
  queue = Queue.Queue()
  # 将所有任务加入队列
  for img in imglist:
    queue.put(img)
  # 多线程爬去图片
  for i in range(1):
    thread = getImg(queue, i)
    threads.append(thread)
  # 阻塞线程,直到线程执行完成
  for thread in threads:
    thread.join()

单线程的执行耗时为:1.35626623274秒

再来看一个:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import threading
import timeit
def countdown(n):
  while n > 0:
    n -= 1
def task1():
  COUNT = 100000000
  thread1 = threading.Thread(target=countdown, args=(COUNT,))
  thread1.start()
  thread1.join()
def task2():
  COUNT = 100000000
  thread1 = threading.Thread(target=countdown, args=(COUNT // 2,))
  thread2 = threading.Thread(target=countdown, args=(COUNT // 2,))
  thread1.start()
  thread2.start()
  thread1.join()
  thread2.join()
if __name__ == '__main__':
  t1 = timeit.Timer(task1)
  print "countdown in one thread ", t1.timeit(1)
  t2 = timeit.Timer(task2)
  print "countdown in two thread ", t2.timeit(1)

task1是单线程,task2是双线程,在我的4核的机器上的执行结果:

countdown in one thread  3.59939150155

countdown in two thread  9.87704289712

天呐,双线程比单线程计算慢了2倍多,这是为什么呢,因为countdown是CPU密集型任务(计算嘛)

I/O密集型任务:线程做I/O处理的时候会释放GIL,其他线程获得GIL,当该线程再做I/O操作时,又会释放GIL,如此往复;

CPU密集型任务:在多核多线程比单核多线程更差,原因是单核多线程,每次释放GIL,唤醒的哪个线程都能获取到GIL锁,所以能够无缝执行(单核多线程的本质就是顺序执行),但多核,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0(CPU0上可能不止一个线程)拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低。

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python实现快速多线程ping的方法

    本文实例讲述了Python实现快速多线程ping的方法.分享给大家供大家参考.具体如下: #!/usr/bin/python #_*_coding:utf-8_*_ # ''' 名称:快速多线程ping程序 开发:gyhong gyh9711 日期:20:51 2011-04-25 ''' import pexpect import datetime from threading import Thread host=["192.168.1.1","192.168.1.123

  • 基python实现多线程网页爬虫

    一般来说,使用线程有两种模式, 一种是创建线程要执行的函数, 把这个函数传递进Thread对象里,让它来执行. 另一种是直接从Thread继承,创建一个新的class,把线程执行的代码放到这个新的class里. 实现多线程网页爬虫,采用了多线程和锁机制,实现了广度优先算法的网页爬虫. 先给大家简单介绍下我的实现思路: 对于一个网络爬虫,如果要按广度遍历的方式下载,它是这样的: 1.从给定的入口网址把第一个网页下载下来 2.从第一个网页中提取出所有新的网页地址,放入下载列表中 3.按下载列表中的地

  • python多线程编程中的join函数使用心得

    今天去辛集买箱包,下午挺晚才回来,又是恶心又是头痛.恶心是因为早上吃坏东西+晕车+回来时看到车祸现场,头痛大概是烈日和空调混合刺激而成.没有时间没有精神没有力气学习了,这篇博客就说说python中一个小小函数. 由于坑爹的学校坑爷的专业,多线程编程老师从来没教过,多线程的概念也是教的稀里糊涂,本人python也是菜鸟级别,所以遇到多线程的编程就傻眼了,别人用的顺手的join函数我却偏偏理解不来.早上在去辛集的路上想这个问题想到恶心,回来后继续写代码测试,终于有些理解了(python官方的英文解释

  • 浅析Python中的多进程与多线程的使用

    在批评Python的讨论中,常常说起Python多线程是多么的难用.还有人对 global interpreter lock(也被亲切的称为"GIL")指指点点,说它阻碍了Python的多线程程序同时运行.因此,如果你是从其他语言(比如C++或Java)转过来的话,Python线程模块并不会像你想象的那样去运行.必须要说明的是,我们还是可以用Python写出能并发或并行的代码,并且能带来性能的显著提升,只要你能顾及到一些事情.如果你还没看过的话,我建议你看看Eqbal Quran的文章

  • Python多线程编程(四):使用Lock互斥锁

    前面已经演示了Python:使用threading模块实现多线程编程二两种方式起线程和Python:使用threading模块实现多线程编程三threading.Thread类的重要函数,这两篇文章的示例都是演示了互不相干的独立线程,现在我们考虑这样一个问题:假设各个线程需要访问同一公共资源,我们的代码该怎么写? 复制代码 代码如下: ''' Created on 2012-9-8   @author: walfred @module: thread.ThreadTest3 '''  impor

  • 理解python多线程(python多线程简明教程)

    对于python 多线程的理解,我花了很长时间,搜索的大部份文章都不够通俗易懂.所以,这里力图用简单的例子,让你对多线程有个初步的认识. 单线程 在好些年前的MS-DOS时代,操作系统处理问题都是单任务的,我想做听音乐和看电影两件事儿,那么一定要先排一下顺序. (好吧!我们不纠结在DOS时代是否有听音乐和看影的应用.^_^) 复制代码 代码如下: from time import ctime,sleep def music():    for i in range(2):        prin

  • 浅析Python多线程下的变量问题

    在多线程环境下,每个线程都有自己的数据.一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁. 但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦: def process_student(name): std = Student(name) # std是局部变量,但是每个函数都要用它,因此必须传进去: do_task_1(std) do_task_2(std) def do_task_1(std): do_subtask

  • Python中多线程thread与threading的实现方法

    学过Python的人应该都知道,Python是支持多线程的,并且是native的线程.本文主要是通过thread和threading这两个模块来实现多线程的. python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用. 这里需要提一下的是python对线程的支持还不够完善,不能利用多CPU,但是下个版本的python中已经考虑改进这点,让我们拭目以待吧. threading模块里面主要是对一些线程的操作对象化了,创建

  • 详解Python中的多线程编程

    一.简介 多线程编程技术可以实现代码并行性,优化处理能力,同时功能的更小划分可以使代码的可重用性更好.Python中threading和Queue模块可以用来实现多线程编程. 二.详解 1.线程和进程        进程(有时被称为重量级进程)是程序的一次执行.每个进程都有自己的地址空间.内存.数据栈以及其它记录其运行轨迹的辅助数据.操作系统管理在其上运行的所有进程,并为这些进程公平地分配时间.进程也可以通过fork和spawn操作来完成其它的任务,不过各个进程有自己的内存空间.数据栈等,所以只

  • Python多线程原理与用法实例剖析

    本文实例讲述了Python多线程原理与用法.分享给大家供大家参考,具体如下: 先来看个栗子: 下面来看一下I/O秘籍型的线程,举个栗子--爬虫,下面是爬下来的图片用4个线程去写文件 #!/usr/bin/env python # -*- coding:utf-8 -*- import re import urllib import threading import Queue import timeit def getHtml(url): html_page = urllib.urlopen(u

  • Python多线程原理与用法详解

    本文实例讲述了Python多线程原理与用法.分享给大家供大家参考,具体如下: 多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提升整体处理性能.具有这种能力的系统包括对称多处理机.多核心处理器以及芯片级多处理(Chip-level multithreading)或同时多线程(Simultaneous multithreading)处理器.[1] 在一个程序中,这些独立运行的程序片

  • Python多线程threading模块用法实例分析

    本文实例讲述了Python多线程threading模块用法.分享给大家供大家参考,具体如下: 多线程 - threading python的thread模块是比较底层的模块,python的threading模块对thread做了一些包装,可以更加方便的被使用. 1. 使用threading模块 单线程执行 #coding=utf-8 import time def saySorry(): print('跑一圈') time.sleep(1) if __name__ == "__main__&qu

  • Python 多线程知识点总结及实例用法

    Python 多线程 多线程类似于同时执行多个不同程序,多线程运行有如下优点: 使用线程可以把占据长时间的程序中的任务放到后台去处理. 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度 程序的运行速度可能加快 在一些等待的任务实现上如用户输入.文件读写和网络收发数据等,线程就比较有用了.在这种情况下我们可以释放一些珍贵的资源如内存占用等等. 线程在执行过程中与进程还是有区别的.每个独立的进程有一个程序运行的入口.顺序执行序列和程序的出口.

  • Python列表原理与用法详解【创建、元素增加、删除、访问、计数、切片、遍历等】

    本文实例讲述了Python列表原理与用法.分享给大家供大家参考,具体如下: 列表的基本认识 列表简介 列表的创建 基本语法[]创建 list()创建 range()创建整数列表 推导式生成列表(简介一下,重点在 for 循环后讲) 列表元素的增加 append()方法 +运算符操作 extend()方法 insert()插入元素 乘法扩展 列表元素的删除 del 删除 pop()方法 remove()方法 列表元素访问和计数 通过索引直接访问元素 index()获得指定元素在列表中首次出现的索引

  • Python多线程模块Threading用法示例小结

    本文实例讲述了Python多线程模块Threading用法.分享给大家供大家参考,具体如下: 步入正题前,先准备下基本知识,线程与进程的概念. 相信作为一个测试人员,如果从理论概念上来说其两者的概念或者区别,估计只会一脸蒙蔽,这里就举个例子来说明下其中的相关概念. 平安夜刚过,你是吃到了苹果还是香蕉呢...其实当你用手去接下对方苹果的时候,你的手臂就可以比喻成进程,你的五个手指就可以比喻成线程,所以很明显,线程可以说是进程的细化,没有进程就不会有线程. 这里还是说下必要的概念:    进程 是操

  • Python多进程原理与用法分析

    本文实例讲述了Python多进程原理与用法.分享给大家供大家参考,具体如下: 进程是程序在计算机上的一次执行活动.当你运行一个程序,你就启动了一个进程.显然,程序是死的(静态的),进程是活的(动态的).进程可以分为系统进程和用户进程.凡是用于完成操作系统的各种功能的进程就是系统进程,它们就是处于运行状态下的操作系统本身:所有由你启动的进程都是用户进程.进程是操作系统进行资源分配的单位. 开启一个进程 import multiprocessing,time,os def runtask(): ti

  • 提升python处理速度原理及方法实例

    这篇文章主要介绍了提升python处理速度原理及方法实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 导读:作为日常生产开发中非常实用的一门语言,python广泛应用于网络爬虫.web开发.自动化测试.数据分析和人工智能等领域.但python是单线程的,想要提升python的处理速度,涉及到一个很关键的技术--协程.本篇文章,将讲述python协程的理解与使用. 1.操作系统相关概念 在理解与使用协程之前,先简单的了解几个与操作系统相关的概念

  • Python多层装饰器用法实例分析

    本文实例讲述了Python多层装饰器用法.分享给大家供大家参考,具体如下: 前言 Python 的装饰器能够在不破坏函数原本结构的基础上,对函数的功能进行补充.当我们需要对一个函数补充不同的功能,可能需要用到多层的装饰器.在我的使用过程中,遇到了两种装饰器层叠的情况,这里把这两种情况写下来,作为踩坑记录. 情况1 def A(funC): def decorated_C(funE): def decorated_E_by_CA(*args, **kwargs): out = funC(funE)

  • Java设计模式之策略模式原理与用法实例详解

    本文实例讲述了Java设计模式之策略模式原理与用法.分享给大家供大家参考,具体如下: 策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换.策略模式让算法独立于使用它的客户而独立变化.其中JDK里面的TreeSet类和TreeMap类就用到了策略模式.这两个类是带排序的集合类,其中排序的规则就相当于策略模式里定义的一系列算法,而集合类就相当于是策略模式里的环境类,供用户使用,用只知道TreeSet和TreeMap是带排序的,至于怎么排序的,是由排序的算法决定的. 策略模式

随机推荐