使用Python给头像戴上圣诞帽的图像操作过程解析

前言

随着圣诞的到来,大家纷纷@官方微信给自己的头像加上一顶圣诞帽。当然这种事情用很多P图软件都可以做到。但是作为一个学习图像处理的技术人,还是觉得我们有必要写一个程序来做这件事情。而且这完全可以作为一个练手的小项目,工作量不大,而且很有意思。

用到的工具

  • OpenCV(毕竟我们主要的内容就是OpenCV...)
  • dlib(dlib的人脸检测比OpenCV更好用,而且dlib有OpenCV没有的关键点检测。)

用到的语言为Python。但是完全可以改成C++版本,时间有限,就不写了。有兴趣的小伙伴可以拿来练手。

流程

一、素材准备

首先我们需要准备一个圣诞帽的素材,格式最好为PNG,因为PNG的话我们可以直接用Alpha通道作为掩膜使用。我们用到的圣诞帽如下图:

我们通过通道分离可以得到圣诞帽图像的alpha通道。代码如下:

r,g,b,a = cv2.split(hat_img)
 rgb_hat = cv2.merge((r,g,b))
 cv2.imwrite("hat_alpha.jpg",a)

为了能够与rgb通道的头像图片进行运算,我们把rgb三通道合成一张rgb的彩色帽子图。Alpha通道的图像如下图所示。

二、人脸检测与人脸关键点检测

我们用下面这张图作为我们的测试图片。

下面我们用dlib的正脸检测器进行人脸检测,用dlib提供的模型提取人脸的五个关键点。代码如下:

# dlib人脸关键点检测器 predictor_path = "shape_predictor_5_face_landmarks.dat" predictor = dlib.shape_predictor(predictor_path)

 # dlib正脸检测器
 detector = dlib.get_frontal_face_detector()

 # 正脸检测
 dets = detector(img, 1)

 # 如果检测到人脸
 if len(dets)>0:
   for d in dets:
     x,y,w,h = d.left(),d.top(), d.right()-d.left(), d.bottom()-d.top()
     # x,y,w,h = faceRect
     cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2,8,0)

     # 关键点检测,5个关键点
     shape = predictor(img, d)
     for point in shape.parts():
       cv2.circle(img,(point.x,point.y),3,color=(0,255,0))

     cv2.imshow("image",img)
     cv2.waitKey() 

这部分效果如下图:

三、调整帽子大小

我们选取两个眼角的点,求中心作为放置帽子的x方向的参考坐标,y方向的坐标用人脸框上线的y坐标表示。然后我们根据人脸检测得到的人脸的大小调整帽子的大小,使得帽子大小合适。

# 选取左右眼眼角的点 point1 = shape.part(0) point2 = shape.part(2)
     # 求两点中心
     eyes_center = ((point1.x+point2.x)//2,(point1.y+point2.y)//2)
     # cv2.circle(img,eyes_center,3,color=(0,255,0))
     # cv2.imshow("image",img)
     # cv2.waitKey()
     # 根据人脸大小调整帽子大小
     factor = 1.5
     resized_hat_h = int(round(rgb_hat.shape[0]*w/rgb_hat.shape[1]*factor))
     resized_hat_w = int(round(rgb_hat.shape[1]*w/rgb_hat.shape[1]*factor))
     if resized_hat_h > y:
       resized_hat_h = y-1
     # 根据人脸大小调整帽子大小
     resized_hat = cv2.resize(rgb_hat,(resized_hat_w,resized_hat_h))

四、提取帽子和需要添加帽子的区域

按照之前所述,去Alpha通道作为mask。并求反。这两个mask一个用于把帽子图中的帽子区域取出来,一个用于把人物图中需要填帽子的区域空出来。后面你将会看到。

用alpha通道作为mask

     mask = cv2.resize(a,(resized_hat_w,resized_hat_h))
     mask_inv = cv2.bitwise_not(mask)

从原图中取出需要添加帽子的区域,这里我们用的是位运算操作。

# 帽子相对与人脸框上线的偏移量 dh = 0 dw = 0 # 原图ROI # bg_roi = img[y+dh-resized_hat_h:y+dh, x+dw:x+dw+resized_hat_w] bg_roi = img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)]
     # 原图ROI中提取放帽子的区域
     bg_roi = bg_roi.astype(float)
     mask_inv = cv2.merge((mask_inv,mask_inv,mask_inv))
     alpha = mask_inv.astype(float)/255

     # 相乘之前保证两者大小一致(可能会由于四舍五入原因不一致)
     alpha = cv2.resize(alpha,(bg_roi.shape[1],bg_roi.shape[0]))
     # print("alpha size: ",alpha.shape)
     # print("bg_roi size: ",bg_roi.shape)
     bg = cv2.multiply(alpha, bg_roi)
     bg = bg.astype('uint8')

这是的背景区域(bg)如下图所示。可以看到,刚好是需要填充帽子的区域缺失了。

然后我们提取帽子区域。

# 提取帽子区域 hat = cv2.bitwise_and(resized_hat,resized_hat,mask = mask)

提取得到的帽子区域如下图。帽子区域正好与上一个背景区域互补。

五、添加圣诞帽

最后我们把两个区域相加。再放回到原图中去,就可以得到我们想要的圣诞帽图了。这里需要注意的就是,相加之前resize一下保证两者大小一致,因为可能会由于四舍五入原因不一致。

# 相加之前保证两者大小一致(可能会由于四舍五入原因不一致) hat = cv2.resize(hat,(bg_roi.shape1,bg_roi.shape[0])) # 两个ROI区域相加 add_hat = cv2.add(bg,hat) # cv2.imshow("add_hat",add_hat)
     # 把添加好帽子的区域放回原图
     img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)] = add_hat

最后我们得到的效果图如下所示。

源码地址:https://github.com/LiuXiaolong19920720/Add-Christmas-Hat

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python图像滤波处理操作示例【基于ImageFilter类】

    本文实例讲述了Python图像滤波处理操作.分享给大家供大家参考,具体如下: 在图像处理中,经常需要对图像进行平滑.锐化.边界增强等滤波处理.在使用PIL图像处理库时,我们通过Image类中的成员函数filter()来调用滤波函数对图像进行滤波,而滤波函数则通过ImageFilter类来定义的. 下面先直接看一个样例: #-*- coding: UTF-8 -*- from PIL import Image from PIL import ImageFilter def image_filter

  • python简单图片操作:打开\显示\保存图像方法介绍

    一提到数字图像处理,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因此,我们这里使用python这个脚本语言来进行数字图像处理. 要使用python,必须先安装python,一般是2.7版本以上,不管是在windows系统,还是linux系统,安装都是非常简单的. 要使用python进行各种开发,就必须安装对应的库.这和matlab非常相似,只是matlab里面叫工具箱

  • Python用Pillow(PIL)进行简单的图像操作方法

    Python用Pillow(PIL)进行简单的图像操作方法 颜色与RGBA值 计算机通常将图像表示为RGB值,或者再加上alpha值(通透度,透明度),称为RGBA值.在Pillow中,RGBA的值表示为由4个整数组成的元组,分别是R.G.B.A.整数的范围0~255.RGB全0就可以表示黑色,全255代表黑色.可以猜测(255, 0, 0, 255)代表红色,因为R分量最大,G.B分量为0,所以呈现出来是红色.但是当alpha值为0时,无论是什么颜色,该颜色都不可见,可以理解为透明. from

  • Python图像的增强处理操作示例【基于ImageEnhance类】

    本文实例讲述了Python图像的增强处理操作.分享给大家供大家参考,具体如下: python中PIL模块中有一个叫做ImageEnhance的类,该类专门用于图像的增强处理,不仅可以增强(或减弱)图像的亮度.对比度.色度,还可以用于增强图像的锐度. 具体见下面的例子: #-*- coding: UTF-8 -*- from PIL import Image from PIL import ImageEnhance #原始图像 image = Image.open('lena.jpg') imag

  • Python OpenCV处理图像之图像像素点操作

    本文实例为大家分享了Python OpenCV图像像素点操作的具体代码,供大家参考,具体内容如下 0x01. 像素 有两种直接操作图片像素点的方法: 第一种办法就是将一张图片看成一个多维的list,例如对于一张图片im,想要操作第四行第四列的像素点就直接 im[3,3] 就可以获取到这个点的RGB值. 第二种就是使用 OpenCV 提供的 Get1D. Get2D 等函数. 推荐使用第一种办法吧,毕竟简单. 0x02. 获取行和列像素 有一下四个函数: cv.GetCol(im, 0): 返回第

  • Python图像灰度变换及图像数组操作

    使用python以及numpy通过直接操作图像数组完成一系列基本的图像处理 numpy简介: NumPy是一个非常有名的 Python 科学计算工具包,其中包含了大量有用的工具,比如数组对象(用来表示向量.矩阵.图像等)以及线性代数函数. 数组对象可以实现数组中重要的操作,比如矩阵乘积.转置.解方程系统.向量乘积和归一化.这为图像变形.对变化进行建模.图像分类.图像聚类等提供了基础. 在上一篇python基本图像操作中,当载入图像时,通过调用 array() 方法将图像转换成NumPy的数组对象

  • Python给图像添加噪声具体操作

    在我们进行图像数据实验的时候往往需要给图像添加相应的噪声,那么该怎么添加呢,下面给出具体得操作方法. 1.打开Python的shell界面,界面如图所示: 2.载入skimage工具包和其他的工具包,如图所示,代码如下: from skimage import io,data import numpy as np 3.采用以下指令读取图片: img=data.coffee() 4.采用以下指令填产生噪声: rows,cols,dims=img.shape for i in range(5000)

  • Python Image模块基本图像处理操作小结

    本文实例讲述了Python Image模块基本图像处理操作.分享给大家供大家参考,具体如下: Python 里面最常用的图像操作库是Image library(PIL),功能上,虽然还不能跟Matlab比较,但是还是比较强大的,废话补多少,写点记录笔记. 1. 首先需要导入需要的图像库: import Image 2. 读取一张图片: im=Image.open('/home/Picture/test.jpg') 3. 显示一张图片: im.show() 4. 保存图片: im.save("sa

  • 使用Python给头像戴上圣诞帽的图像操作过程解析

    前言 随着圣诞的到来,大家纷纷@官方微信给自己的头像加上一顶圣诞帽.当然这种事情用很多P图软件都可以做到.但是作为一个学习图像处理的技术人,还是觉得我们有必要写一个程序来做这件事情.而且这完全可以作为一个练手的小项目,工作量不大,而且很有意思. 用到的工具 OpenCV(毕竟我们主要的内容就是OpenCV...) dlib(dlib的人脸检测比OpenCV更好用,而且dlib有OpenCV没有的关键点检测.) 用到的语言为Python.但是完全可以改成C++版本,时间有限,就不写了.有兴趣的小伙

  • 使用Python给头像加上圣诞帽或圣诞老人小图标附源码

    随着圣诞的到来,想给给自己的头像加上一顶圣诞帽.如果不是头像,就加一个圣诞老人陪伴. 用Python给头像加上圣诞帽,看了下大概也都是来自2017年大神的文章:https://zhuanlan.zhihu.com/p/32283641 主要流程 素材准备 人脸检测与人脸关键点检测 调整大小,添加帽子 用dlib的正脸检测器进行人脸检测,用dlib提供的模型提取人脸的五个关键点 调整帽子大小,带帽 选取两个眼角的点,求中心作为放置帽子的x方向的参考坐标,y方向的坐标用人脸框上线的y坐标表示.然后我

  • 今天 平安夜 Python 送你一顶圣诞帽 @微信官方

    还有多少耿直boy和我一样在等待微信官方送上一顶圣诞帽? 最后知道真相的我眼泪掉下来-- (还蒙在鼓里的同学请在微信最上方的搜索栏自行搜索『圣诞帽』) 好吧,你不给,咱自己来,不就是个帽子嘛. Python 在手,圣诞帽我有! OpenCV 库 加上几张圣诞帽图片,三四十行代码轻松搞定.只不过调试的时候要注意点,图像坐标和像素矩阵索引的维度别搞乱了. 大致步骤: 安装 OpenCV(网上搜下教程有很多): 用 OpenCV 提供的级联分类器做 人脸检测 ,定位出图片中的人脸位置: 根据找出的人脸

  • 使用canvas实现仿新浪微博头像截取上传功能

    最近看到微博头像上传功能很感兴趣,于是就使用canvas写了一个,本文写的不好还请见谅.本程序目前在谷歌浏览器和火狐浏览器测试可用,ie浏览器无法支持. 因为ie的安全机制不允许img使用本地路径,所以若想ie支持本程序,必须先将图片上传,然后给img对象上传后的图片地址. 我在这里没写,是因为暂时没写上传功能的后端代码,并且还不确定有没有更好的解决办法. 如下是新浪的 如下是我做的截取部分 代码: var canvas = document.getElementById('canvas'),

  • python获取指定网页上所有超链接的方法

    本文实例讲述了python获取指定网页上所有超链接的方法.分享给大家供大家参考.具体如下: 这段python代码通过urllib2抓取网页,然后通过简单的正则表达式分析网页上的全部url地址 import urllib2 import re #connect to a URL website = urllib2.urlopen(url) #read html code html = website.read() #use re.findall to get all the links links

  • jQuery实现模拟flash头像裁切上传功能示例

    本文实例讲述了jQuery实现模拟flash头像裁切上传功能.分享给大家供大家参考,具体如下: 是的,jq已经有类似的插件了,或者干脆用flash算了,为什么我还要自己写?因为造(wo)轮(bu)子(hui)也(flash)是一个学习的过程,轮子不会造,将来怎么造飞机?先来一张最终效果图: 一.大概思路 用js来做这个效果,先得将图片A上传到服务器,关于异步上传的插件有很多,不用插件也可以参考本人上一篇博客用纯js的方式上传,上传之后显示到页面里,由于上传的图片尺寸各不相同,要完整地显示图片,就

  • Python下载指定页面上图片的方法

    本文实例讲述了Python下载指定页面上图片的方法.分享给大家供大家参考,具体如下: #!/usr/bin/python #coding:utf8 import re import urllib def getHtml(url): page = urllib.urlopen(url) html = page.read() return html def getImg(html): reg = r'src="(.*?\.jpg)" ' imgre = re.compile(reg) im

  • python 实现识别图片上的数字

    Python 3.6 版本 Pytesseract 图像验证码识别 环境: (1) win7 64位 (2) Idea (3) python 3.6 (4) pip install pillow <&nbsp>pip install pytesseract (5) 识别引擎tesseract-ocr 安装 安装tesseract-ocr的识别引擎 第一步:下载安装包 根据https://github.com/UB-Mannheim/tesseract/wiki,找到下载安装包. 我下载

  • python修改FTP服务器上的文件名

    python修改FTP服务器上的文件名,具体代码如下所示: #-*- coding:utf-8 -*- #修改ftp服务器上的文件名 from ftplib import FTP def ftpoperate(ip,port,username,passwd,path): #获取ftp服务器某一文件夹下的所有文件名 ftp = FTP() ftp.set_debuglevel(0) ftp.connect(ip,port) ftp.login(username,passwd) ftp.cwd(pa

  • python paramiko利用sftp上传目录到远程的实例

    网上大部分都是上传文件,于是个人参照网上一些博客的内容,写了一个把windows上目录上传到远程linux的一个小程序. 下面是代码: class ExportPrepare(object): def __init__(self): pass def sftp_con(self): t = paramiko.Transport((self.ip, self.port)) t.connect(username=self.username, password=self.password) retur

随机推荐