MySQL如何选择合适的索引

先来看一个栗子

EXPLAIN select * from employees where name > 'a';

如果用name索引查找数据需要遍历name字段联合索引树,然后根据遍历出来的主键值去主键索引树里再去查出最终数据,成本比全表扫描还高。

可以用覆盖索引优化,这样只需要遍历name字段的联合索引树就可以拿到所有的结果。

EXPLAIN select name,age,position from employees where name > 'a';

可以看到通过select出的字段是覆盖索引,MySQL底层使用了索引优化。在看另一个case:

EXPLAIN select * from employees where name > 'zzz';

对于上面的这两种 name>'a' 和 name>'zzz'的执行结果, mysql最终是否选择走索引或者一张表涉及多个索引, mysql最终如何选择索引,可以通过trace工具来一查究竟,开启trace工具会影响mysql性能,所以只能临时分析sql使用,用完之后需要立即关闭。

SET SESSION optimizer_trace="enabled=on",end_markers_in_json=on; --开启trace
SELECT * FROM employees WHERE name > 'a' ORDER BY position;
SELECT * FROM information_schema.OPTIMIZER_TRACE;

看trace字段:

{
 "steps": [
 {
  "join_preparation": { --第一阶段:SQl准备阶段
  "select#": 1,
  "steps": [
   {
   "expanded_query": "/* select#1 */ select `employees`.`id` AS `id`,`employees`.`name` AS `name`,`employees`.`age` AS `age`,`employees`.`position` AS `position`,`employees`.`hire_time` AS `hire_time` from `employees` where (`employees`.`name` > 'a') order by `employees`.`position`"
   }
  ] /* steps */
  } /* join_preparation */
 },
 {
  "join_optimization": { --第二阶段:SQL优化阶段
  "select#": 1,
  "steps": [
   {
   "condition_processing": { --条件处理
    "condition": "WHERE",
    "original_condition": "(`employees`.`name` > 'a')",
    "steps": [
    {
     "transformation": "equality_propagation",
     "resulting_condition": "(`employees`.`name` > 'a')"
    },
    {
     "transformation": "constant_propagation",
     "resulting_condition": "(`employees`.`name` > 'a')"
    },
    {
     "transformation": "trivial_condition_removal",
     "resulting_condition": "(`employees`.`name` > 'a')"
    }
    ] /* steps */
   } /* condition_processing */
   },
   {
   "table_dependencies": [ --表依赖详情
    {
    "table": "`employees`",
    "row_may_be_null": false,
    "map_bit": 0,
    "depends_on_map_bits": [
    ] /* depends_on_map_bits */
    }
   ] /* table_dependencies */
   },
   {
   "ref_optimizer_key_uses": [
   ] /* ref_optimizer_key_uses */
   },
   {
   "rows_estimation": [ --预估标的访问成本
    {
    "table": "`employees`",
    "range_analysis": {
     "table_scan": { --全表扫描情况
     "rows": 3, --扫描行数
     "cost": 3.7 --查询成本
     } /* table_scan */,
     "potential_range_indices": [ --查询可能使用的索引
     {
      "index": "PRIMARY", --主键索引
      "usable": false,
      "cause": "not_applicable"
     },
     {
      "index": "idx_name_age_position", --辅助索引
      "usable": true,
      "key_parts": [
      "name",
      "age",
      "position",
      "id"
      ] /* key_parts */
     },
     {
      "index": "idx_age",
      "usable": false,
      "cause": "not_applicable"
     }
     ] /* potential_range_indices */,
     "setup_range_conditions": [
     ] /* setup_range_conditions */,
     "group_index_range": {
     "chosen": false,
     "cause": "not_group_by_or_distinct"
     } /* group_index_range */,
     "analyzing_range_alternatives": { ‐‐分析各个索引使用成本
     "range_scan_alternatives": [
      {
      "index": "idx_name_age_position",
      "ranges": [
       "a < name"
      ] /* ranges */,
      "index_dives_for_eq_ranges": true,
      "rowid_ordered": false,
      "using_mrr": false,
      "index_only": false, ‐‐是否使用覆盖索引
      "rows": 3, --‐‐索引扫描行数
      "cost": 4.61, --索引使用成本
      "chosen": false, ‐‐是否选择该索引
      "cause": "cost"
      }
     ] /* range_scan_alternatives */,
     "analyzing_roworder_intersect": {
      "usable": false,
      "cause": "too_few_roworder_scans"
     } /* analyzing_roworder_intersect */
     } /* analyzing_range_alternatives */
    } /* range_analysis */
    }
   ] /* rows_estimation */
   },
   {
   "considered_execution_plans": [
    {
    "plan_prefix": [
    ] /* plan_prefix */,
    "table": "`employees`",
    "best_access_path": {
     "considered_access_paths": [
     {
      "access_type": "scan",
      "rows": 3,
      "cost": 1.6,
      "chosen": true,
      "use_tmp_table": true
     }
     ] /* considered_access_paths */
    } /* best_access_path */,
    "cost_for_plan": 1.6,
    "rows_for_plan": 3,
    "sort_cost": 3,
    "new_cost_for_plan": 4.6,
    "chosen": true
    }
   ] /* considered_execution_plans */
   },
   {
   "attaching_conditions_to_tables": {
    "original_condition": "(`employees`.`name` > 'a')",
    "attached_conditions_computation": [
    ] /* attached_conditions_computation */,
    "attached_conditions_summary": [
    {
     "table": "`employees`",
     "attached": "(`employees`.`name` > 'a')"
    }
    ] /* attached_conditions_summary */
   } /* attaching_conditions_to_tables */
   },
   {
   "clause_processing": {
    "clause": "ORDER BY",
    "original_clause": "`employees`.`position`",
    "items": [
    {
     "item": "`employees`.`position`"
    }
    ] /* items */,
    "resulting_clause_is_simple": true,
    "resulting_clause": "`employees`.`position`"
   } /* clause_processing */
   },
   {
   "refine_plan": [
    {
    "table": "`employees`",
    "access_type": "table_scan"
    }
   ] /* refine_plan */
   },
   {
   "reconsidering_access_paths_for_index_ordering": {
    "clause": "ORDER BY",
    "index_order_summary": {
    "table": "`employees`",
    "index_provides_order": false,
    "order_direction": "undefined",
    "index": "unknown",
    "plan_changed": false
    } /* index_order_summary */
   } /* reconsidering_access_paths_for_index_ordering */
   }
  ] /* steps */
  } /* join_optimization */
 },
 {
  "join_execution": { --第三阶段:SQL执行阶段
  "select#": 1,
  "steps": [
   {
   "filesort_information": [
    {
    "direction": "asc",
    "table": "`employees`",
    "field": "position"
    }
   ] /* filesort_information */,
   "filesort_priority_queue_optimization": {
    "usable": false,
    "cause": "not applicable (no LIMIT)"
   } /* filesort_priority_queue_optimization */,
   "filesort_execution": [
   ] /* filesort_execution */,
   "filesort_summary": {
    "rows": 3,
    "examined_rows": 3,
    "number_of_tmp_files": 0,
    "sort_buffer_size": 200704,
    "sort_mode": "<sort_key, additional_fields>"
   } /* filesort_summary */
   }
  ] /* steps */
  } /* join_execution */
 }
 ] /* steps */
}

全表扫描的成本低于索引扫描, 索引MySQL最终会选择全表扫描。

SELECT * FROM employees WHERE name > 'zzz' ORDER BY position;
SELECT * FROM information_schema.OPTIMIZER_TRACE;

{
 "steps": [
 {
  "join_preparation": {
  "select#": 1,
  "steps": [
   {
   "expanded_query": "/* select#1 */ select `employees`.`id` AS `id`,`employees`.`name` AS `name`,`employees`.`age` AS `age`,`employees`.`position` AS `position`,`employees`.`hire_time` AS `hire_time` from `employees` where (`employees`.`name` > 'zzz') order by `employees`.`position`"
   }
  ] /* steps */
  } /* join_preparation */
 },
 {
  "join_optimization": {
  "select#": 1,
  "steps": [
   {
   "condition_processing": {
    "condition": "WHERE",
    "original_condition": "(`employees`.`name` > 'zzz')",
    "steps": [
    {
     "transformation": "equality_propagation",
     "resulting_condition": "(`employees`.`name` > 'zzz')"
    },
    {
     "transformation": "constant_propagation",
     "resulting_condition": "(`employees`.`name` > 'zzz')"
    },
    {
     "transformation": "trivial_condition_removal",
     "resulting_condition": "(`employees`.`name` > 'zzz')"
    }
    ] /* steps */
   } /* condition_processing */
   },
   {
   "table_dependencies": [
    {
    "table": "`employees`",
    "row_may_be_null": false,
    "map_bit": 0,
    "depends_on_map_bits": [
    ] /* depends_on_map_bits */
    }
   ] /* table_dependencies */
   },
   {
   "ref_optimizer_key_uses": [
   ] /* ref_optimizer_key_uses */
   },
   {
   "rows_estimation": [
    {
    "table": "`employees`",
    "range_analysis": {
     "table_scan": {
     "rows": 3,
     "cost": 3.7
     } /* table_scan */,
     "potential_range_indices": [
     {
      "index": "PRIMARY",
      "usable": false,
      "cause": "not_applicable"
     },
     {
      "index": "idx_name_age_position",
      "usable": true,
      "key_parts": [
      "name",
      "age",
      "position",
      "id"
      ] /* key_parts */
     },
     {
      "index": "idx_age",
      "usable": false,
      "cause": "not_applicable"
     }
     ] /* potential_range_indices */,
     "setup_range_conditions": [
     ] /* setup_range_conditions */,
     "group_index_range": {
     "chosen": false,
     "cause": "not_group_by_or_distinct"
     } /* group_index_range */,
     "analyzing_range_alternatives": {
     "range_scan_alternatives": [
      {
      "index": "idx_name_age_position",
      "ranges": [
       "zzz < name"
      ] /* ranges */,
      "index_dives_for_eq_ranges": true,
      "rowid_ordered": false,
      "using_mrr": false,
      "index_only": false,
      "rows": 1,
      "cost": 2.21,
      "chosen": true
      }
     ] /* range_scan_alternatives */,
     "analyzing_roworder_intersect": {
      "usable": false,
      "cause": "too_few_roworder_scans"
     } /* analyzing_roworder_intersect */
     } /* analyzing_range_alternatives */,
     "chosen_range_access_summary": {
     "range_access_plan": {
      "type": "range_scan",
      "index": "idx_name_age_position",
      "rows": 1,
      "ranges": [
      "zzz < name"
      ] /* ranges */
     } /* range_access_plan */,
     "rows_for_plan": 1,
     "cost_for_plan": 2.21,
     "chosen": true
     } /* chosen_range_access_summary */
    } /* range_analysis */
    }
   ] /* rows_estimation */
   },
   {
   "considered_execution_plans": [
    {
    "plan_prefix": [
    ] /* plan_prefix */,
    "table": "`employees`",
    "best_access_path": {
     "considered_access_paths": [
     {
      "access_type": "range",
      "rows": 1,
      "cost": 2.41,
      "chosen": true,
      "use_tmp_table": true
     }
     ] /* considered_access_paths */
    } /* best_access_path */,
    "cost_for_plan": 2.41,
    "rows_for_plan": 1,
    "sort_cost": 1,
    "new_cost_for_plan": 3.41,
    "chosen": true
    }
   ] /* considered_execution_plans */
   },
   {
   "attaching_conditions_to_tables": {
    "original_condition": "(`employees`.`name` > 'zzz')",
    "attached_conditions_computation": [
    ] /* attached_conditions_computation */,
    "attached_conditions_summary": [
    {
     "table": "`employees`",
     "attached": "(`employees`.`name` > 'zzz')"
    }
    ] /* attached_conditions_summary */
   } /* attaching_conditions_to_tables */
   },
   {
   "clause_processing": {
    "clause": "ORDER BY",
    "original_clause": "`employees`.`position`",
    "items": [
    {
     "item": "`employees`.`position`"
    }
    ] /* items */,
    "resulting_clause_is_simple": true,
    "resulting_clause": "`employees`.`position`"
   } /* clause_processing */
   },
   {
   "refine_plan": [
    {
    "table": "`employees`",
    "pushed_index_condition": "(`employees`.`name` > 'zzz')",
    "table_condition_attached": null,
    "access_type": "range"
    }
   ] /* refine_plan */
   },
   {
   "reconsidering_access_paths_for_index_ordering": {
    "clause": "ORDER BY",
    "index_order_summary": {
    "table": "`employees`",
    "index_provides_order": false,
    "order_direction": "undefined",
    "index": "idx_name_age_position",
    "plan_changed": false
    } /* index_order_summary */
   } /* reconsidering_access_paths_for_index_ordering */
   }
  ] /* steps */
  } /* join_optimization */
 },
 {
  "join_execution": {
  "select#": 1,
  "steps": [
   {
   "filesort_information": [
    {
    "direction": "asc",
    "table": "`employees`",
    "field": "position"
    }
   ] /* filesort_information */,
   "filesort_priority_queue_optimization": {
    "usable": false,
    "cause": "not applicable (no LIMIT)"
   } /* filesort_priority_queue_optimization */,
   "filesort_execution": [
   ] /* filesort_execution */,
   "filesort_summary": {
    "rows": 0,
    "examined_rows": 0,
    "number_of_tmp_files": 0,
    "sort_buffer_size": 200704,
    "sort_mode": "<sort_key, additional_fields>"
   } /* filesort_summary */
   }
  ] /* steps */
  } /* join_execution */
 }
 ] /* steps */
}

查看trace字段可知索引扫描的成本低于全表扫描的成本,所以MySQL最终选择索引扫描。

SET SESSION optimizer_trace="enabled=off"; -- 关闭trace

总结

以上所述是小编给大家介绍的MySQL如何选择合适的索引,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • MySQL的索引详解

    一. 索引基础 1.1 简介 在MySQL中,索引(index)也叫做"键(key)",它是存储引擎用于快速找到记录的一种数据结构. 索引对于良好的性能非常关键,尤其是当表中的数据量越来越大时,索引对性能的影响就愈发重要. 索引优化应该是对查询性能优化最有效的手段,创建一个真正最优的索引经常需要重写SQL查询语句. 1.2 索引的工作原理 要理解MySQL中索引的工作原理,最简单的方法就是去看一看一本书的索引部分:比如你想在一本书中寻找某个主题,一般会先看书的索引目录,找到对应的章节.

  • 一个案例彻底弄懂如何正确使用mysql inndb联合索引

    有一个业务是查询最新审核的5条数据 SELECT `id`, `title` FROM `th_content` WHERE `audit_time` < 1541984478 AND `status` = 'ONLINE' ORDER BY `audit_time` DESC, `id` DESC LIMIT 5; 查看当时的监控情况 cpu 使用率是超过了100%,show processlist看到很多类似的查询都是处于create sort index的状态. 查看该表的结构 CREAT

  • MySQL索引使用说明(单列索引和多列索引)

    1. 单列索引 在性能优化过程中,选择在哪些列上创建索引是最重要的步骤之一.可以考虑使用索引的主要有两种类型的列:在Where子句中出现的列,在join子句中出现的列.请看下面这个查询: Select age ## 不使用索引 FROM people Where firstname='Mike' ## 考虑使用索引 AND lastname='Sullivan' ## 考虑使用索引 这个查询与前面的查询略有不同,但仍属于简单查询.由于age是在Select部分被引用,MySQL不会用它来限制列选

  • 为什么MySQL数据库索引选择使用B+树?

    在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使用B+树! 学过数据结构的一般对最基础的树都有所认识,因此我们就从与我们主题更为相近的二叉查找树开始. 一.二叉查找树 (1)二叉树简介: 二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质: 1.任意节点左子树不为空,则左子树的值均小于根节点的值: 2.任意节点右子

  • mysql的in会不会让索引失效?

    mysql的in会让索引失效吗?不会! 看结果: mysql> desc select * from tb_province where name in ('lily3', 'lily2', 'lily1'); +----+-------------+-------------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_t

  • Mysql如何适当的添加索引介绍

    这里先简单介绍一下索引: 添加索引是为了提高数据库查询性能,索引是最物美价廉的东西了,不用加内存,不用改程序,不用调sql,只要执行个正确的create index ,查询的速度就可能提高百倍千倍,这可是有诱惑力的,可是天下没有没费的午餐,查询的速度的提高是以牺牲insert update delete的速度为代价的.而且索引大小一般是数据的三分之一  ,再加上索引要加载进内存的,如果全部字段都加索引会以牺牲内存为代价的,所以才要设当的添加索引. 这里简单介绍一下mysql中常用索引: 在添加索

  • MySQL组合索引与最左匹配原则详解

    前言 之前在网上看到过很多关于mysql联合索引最左前缀匹配的文章,自以为就了解了其原理,最近面试时和面试官交流,发现遗漏了些东西,这里自己整理一下这方面的内容. 什么时候创建组合索引? 当我们的where查询存在多个条件查询的时候,我们需要对查询的列创建组合索引 为什么不对没一列创建索引 减少开销 覆盖索引 效率高 减少开销:假如对col1.col2.col3创建组合索引,相当于创建了(col1).(col1,col2).(col1,col2,col3)3个索引 覆盖索引:假如查询SELECT

  • MySQL中有哪些情况下数据库索引会失效详析

    前言 要想分析MySQL查询语句中的相关信息,如是全表查询还是部分查询,就要用到explain. 索引的优点 大大减少了服务器需要扫描的数据量 可以帮助服务器避免排序或减少使用临时表排序 索引可以随机I/O变为顺序I/O 索引的缺点 需要占用磁盘空间,因此冗余低效的索引将占用大量的磁盘空间 降低DML性能,对于数据的任意增删改都需要调整对应的索引,甚至出现索引分裂 索引会产生相应的碎片,产生维护开销 一.explain 用法:explain +查询语句. id:查询语句的序列号,上面图片中只有一

  • 探究MySQL优化器对索引和JOIN顺序的选择

    本文通过一个案例来看看MySQL优化器如何选择索引和JOIN顺序.表结构和数据准备参考本文最后部分"测试环境".这里主要介绍MySQL优化器的主要执行流程,而不是介绍一个优化器的各个组件(这是另一个话题). 我们知道,MySQL优化器只有两个自由度:顺序选择:单表访问方式:这里将详细剖析下面的SQL,看看MySQL优化器如何做出每一步的选择. explain select * from employee as A,department as B where A.LastName = '

  • 深入浅析Mysql联合索引最左匹配原则

    前言 之前在网上看到过很多关于mysql联合索引最左前缀匹配的文章,自以为就了解了其原理,最近面试时和面试官交流,发现遗漏了些东西,这里自己整理一下这方面的内容. 最左前缀匹配原则 在mysql建立联合索引时会遵循最左前缀匹配的原则,即最左优先,在检索数据时从联合索引的最左边开始匹配,示例: 对列col1.列col2和列col3建一个联合索引 KEY test_col1_col2_col3 on test(col1,col2,col3); 联合索引 test_col1_col2_col3 实际建

  • Mysql使用索引的正确方法及索引原理详解

    一 .介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重.说起加速查询,就不得不提到索引了. 什么是索引? 索引在MySQL中也叫做"键",是存储引擎用于快速找到记录的一种数据结构.索引对于良好的性能 非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要. 索引优化应该是对查询性能优化最有效的手段了.索引能

随机推荐