Python3多进程 multiprocessing 模块实例详解

本文实例讲述了Python3多进程 multiprocessing 模块。分享给大家供大家参考,具体如下:

多进程 Multiprocessing 模块

multiprocessing 模块官方说明文档

Process 类

Process 类用来描述一个进程对象。创建子进程的时候,只需要传入一个执行函数和函数的参数即可完成 Process 示例的创建。

star() 方法启动进程,
join() 方法实现进程间的同步,等待所有进程退出。
close() 用来阻止多余的进程涌入进程池 Pool 造成进程阻塞。

multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

target 是函数名字,需要调用的函数
args 函数需要的参数,以 tuple 的形式传入

示例:

import multiprocessing
import os
def run_proc(name):
  print('Child process {0} {1} Running '.format(name, os.getpid()))
if __name__ == '__main__':
  print('Parent process {0} is Running'.format(os.getpid()))
  for i in range(5):
    p = multiprocessing.Process(target=run_proc, args=(str(i),))
    print('process start')
    p.start()
  p.join()
  print('Process close')

结果:

Parent process 809 is Running
process start
process start
process start
process start
process start
Child process 0 810 Running
Child process 1 811 Running
Child process 2 812 Running
Child process 3 813 Running
Child process 4 814 Running
Process close

Pool

Pool 可以提供指定数量的进程供用户使用,默认是 CPU 核数。当有新的请求提交到 Poll 的时候,如果池子没有满,会创建一个进程来执行,否则就会让该请求等待。

- Pool 对象调用 join 方法会等待所有的子进程执行完毕
- 调用 join 方法之前,必须调用 close
- 调用 close 之后就不能继续添加新的 Process 了

pool.apply_async

apply_async 方法用来同步执行进程,允许多个进程同时进入池子。

import multiprocessing
import os
import time
def run_task(name):
  print('Task {0} pid {1} is running, parent id is {2}'.format(name, os.getpid(), os.getppid()))
  time.sleep(1)
  print('Task {0} end.'.format(name))
if __name__ == '__main__':
  print('current process {0}'.format(os.getpid()))
  p = multiprocessing.Pool(processes=3)
  for i in range(6):
    p.apply_async(run_task, args=(i,))
  print('Waiting for all subprocesses done...')
  p.close()
  p.join()
  print('All processes done!')

结果:

current process 921
Waiting for all subprocesses done...
Task 0 pid 922 is running, parent id is 921
Task 1 pid 923 is running, parent id is 921
Task 2 pid 924 is running, parent id is 921
Task 0 end.
Task 3 pid 922 is running, parent id is 921
Task 1 end.
Task 4 pid 923 is running, parent id is 921
Task 2 end.
Task 5 pid 924 is running, parent id is 921
Task 3 end.
Task 4 end.
Task 5 end.
All processes done!

pool.apply

apply(func[, args[, kwds]])

该方法只能允许一个进程进入池子,在一个进程结束之后,另外一个进程才可以进入池子。

import multiprocessing
import os
import time
def run_task(name):
  print('Task {0} pid {1} is running, parent id is {2}'.format(name, os.getpid(), os.getppid()))
  time.sleep(1)
  print('Task {0} end.'.format(name))
if __name__ == '__main__':
  print('current process {0}'.format(os.getpid()))
  p = multiprocessing.Pool(processes=3)
  for i in range(6):
    p.apply(run_task, args=(i,))
  print('Waiting for all subprocesses done...')
  p.close()
  p.join()
  print('All processes done!')

结果:

Task 0 pid 928 is running, parent id is 927
Task 0 end.
Task 1 pid 929 is running, parent id is 927
Task 1 end.
Task 2 pid 930 is running, parent id is 927
Task 2 end.
Task 3 pid 928 is running, parent id is 927
Task 3 end.
Task 4 pid 929 is running, parent id is 927
Task 4 end.
Task 5 pid 930 is running, parent id is 927
Task 5 end.
Waiting for all subprocesses done...
All processes done!

Queue 进程间通信

Queue 用来在多个进程间通信。Queue 有两个方法,get 和 put。

put 方法

Put 方法用来插入数据到队列中,有两个可选参数,blocked 和 timeout。
- blocked = True(默认值),timeout 为正

该方法会阻塞 timeout 指定的时间,直到该队列有剩余空间。如果超时,抛出 Queue.Full 异常。

blocked = False

如果 Queue 已满,立刻抛出 Queue.Full 异常

get 方法

get 方法用来从队列中读取并删除一个元素。有两个参数可选,blocked 和 timeout
- blocked = False (默认),timeout 正值

等待时间内,没有取到任何元素,会抛出 Queue.Empty 异常。

blocked = True

Queue 有一个值可用,立刻返回改值;Queue 没有任何元素,

from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def proc_write(q,urls):
  print('Process(%s) is writing...' % os.getpid())
  for url in urls:
    q.put(url)
    print('Put %s to queue...' % url)
    time.sleep(random.random())
# 读数据进程执行的代码:
def proc_read(q):
  print('Process(%s) is reading...' % os.getpid())
  while True:
    url = q.get(True)
    print('Get %s from queue.' % url)
if __name__=='__main__':
  # 父进程创建Queue,并传给各个子进程:
  q = Queue()
  proc_writer1 = Process(target=proc_write, args=(q,['url_1', 'url_2', 'url_3']))
  proc_writer2 = Process(target=proc_write, args=(q,['url_4','url_5','url_6']))
  proc_reader = Process(target=proc_read, args=(q,))
  # 启动子进程proc_writer,写入:
  proc_writer1.start()
  proc_writer2.start()
  # 启动子进程proc_reader,读取:
  proc_reader.start()
  # 等待proc_writer结束:
  proc_writer1.join()
  proc_writer2.join()
  # proc_reader进程里是死循环,无法等待其结束,只能强行终止:
  proc_reader.terminate()

结果:

Process(1083) is writing...
Put url_1 to queue...
Process(1084) is writing...
Put url_4 to queue...
Process(1085) is reading...
Get url_1 from queue.
Get url_4 from queue.
Put url_5 to queue...
Get url_5 from queue.
Put url_2 to queue...
Get url_2 from queue.
Put url_6 to queue...
Get url_6 from queue.
Put url_3 to queue...
Get url_3 from queue.

Pipe 进程间通信

常用来在两个进程间通信,两个进程分别位于管道的两端。

multiprocessing.Pipe([duplex])

示例一和示例二,也是网上找的别人的例子,尝试理解并增加了注释而已。网上的例子,大多是例子一和例子二在一起的,这里分开来看,比较容易理解。

示例一:

from multiprocessing import Process, Pipe
def send(pipe):
  pipe.send(['spam'] + [42, 'egg'])  # send 传输一个列表
  pipe.close()
if __name__ == '__main__':
  (con1, con2) = Pipe()              # 创建两个 Pipe 实例
  sender = Process(target=send, args=(con1, ))   # 函数的参数,args 一定是实例化之后的 Pip 变量,不能直接写 args=(Pip(),)
  sender.start()                  # Process 类启动进程
  print("con2 got: %s" % con2.recv())       # 管道的另一端 con2 从send收到消息
  con2.close()                   # 关闭管道

结果:

con2 got: ['spam', 42, 'egg']

示例二:

from multiprocessing import Process, Pipe
def talk(pipe):
  pipe.send(dict(name='Bob', spam=42))      # 传输一个字典
  reply = pipe.recv()               # 接收传输的数据
  print('talker got:', reply)
if __name__ == '__main__':
  (parentEnd, childEnd) = Pipe()         # 创建两个 Pipe() 实例,也可以改成 conf1, conf2
  child = Process(target=talk, args=(childEnd,)) # 创建一个 Process 进程,名称为 child
  child.start()                  # 启动进程
  print('parent got:', parentEnd.recv())     # parentEnd 是一个 Pip() 管道,可以接收 child Process 进程传输的数据
  parentEnd.send({x * 2 for x in 'spam'})     # parentEnd 是一个 Pip() 管道,可以使用 send 方法来传输数据
  child.join()                  # 传输的数据被 talk 函数内的 pip 管道接收,并赋值给 reply
  print('parent exit')

结果:

parent got: {'name': 'Bob', 'spam': 42}
talker got: {'ss', 'aa', 'pp', 'mm'}
parent exit

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python Socket编程技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python基于multiprocessing的多进程创建方法

    本文实例讲述了python基于multiprocessing的多进程创建方法.分享给大家供大家参考.具体如下: import multiprocessing import time def clock(interval): while True: print ("the time is %s"% time.time()) time.sleep(interval) if __name__=="__main__": p = multiprocessing.Process

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • Python多进程multiprocessing用法实例分析

    本文实例讲述了Python多进程multiprocessing用法.分享给大家供大家参考,具体如下: mutilprocess简介 像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多. 简单的创建进程: import multiprocessing def worker(num): """thread worker function""" print 'Wor

  • Python Process多进程实现过程

    进程的概念 程序是没有运行的代码,静态的: 进程是运行起来的程序,进程是一个程序运行起来之后和资源的总称: 程序只有一个,但同一份程序可以有多个进程:例如,电脑上多开QQ: 程序和进程的区别在于有没有资源,进程有资源而程序没有资源,进程是一个资源分配的基本单元: 程序在没运行的时候没有资源,没有显卡,没有网卡,等等:双击运行后有摄像头,有网速等等,就叫做进程: 进程的状态 进程状态图 就绪态:运行的条件都已经慢去,正在等在cpu执行 执行态:cpu正在执行其功能 等待态:等待某些条件满足,例如一

  • Python多进程multiprocessing.Pool类详解

    multiprocessing模块 multiprocessing包是Python中的多进程管理包.它与 threading.Thread类似,可以利用multiprocessing.Process对象来创建一个进程.该进程可以允许放在Python程序内部编写的函数中.该Process对象与Thread对象的用法相同,拥有is_alive().join([timeout]).run().start().terminate()等方法.属性有:authkey.daemon(要通过start()设置)

  • Python Multiprocessing多进程 使用tqdm显示进度条的实现

    1.背景 在python运行一些,计算复杂度比较高的函数时,服务器端单核CPU的情况比较耗时,因此需要多CPU使用多进程加快速度 2.函数要求 笔者使用的是:pathos.multiprocessing 库,进度条显示用tqdm库,安装方法: pip install pathos 安装完成后 from pathos.multiprocessing import ProcessingPool as Pool from tqdm import tqdm 这边使用pathos的原因是因为,multip

  • Python多进程库multiprocessing中进程池Pool类的使用详解

    问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bagging ensemble!只是我没有抽样.文本不大,大概3000行,topic个数为8,于是我写了一个串行的程序,一个topic算完之后再算另一个topic.可是我在每个topic中用了GridSearchCV来调参,又要选特征又要调整regressor的参数,导致参数组合一共有1782种.我真

  • Python3多进程 multiprocessing 模块实例详解

    本文实例讲述了Python3多进程 multiprocessing 模块.分享给大家供大家参考,具体如下: 多进程 Multiprocessing 模块 multiprocessing 模块官方说明文档 Process 类 Process 类用来描述一个进程对象.创建子进程的时候,只需要传入一个执行函数和函数的参数即可完成 Process 示例的创建. star() 方法启动进程, join() 方法实现进程间的同步,等待所有进程退出. close() 用来阻止多余的进程涌入进程池 Pool 造

  • linux下的C\C++多进程多线程编程实例详解

    linux下的C\C++多进程多线程编程实例详解 1.多进程编程 #include <stdlib.h> #include <sys/types.h> #include <unistd.h> int main() { pid_t child_pid; /* 创建一个子进程 */ child_pid = fork(); if(child_pid == 0) { printf("child pid\n"); exit(0); } else { print

  • Python3 处理JSON的实例详解

    Python3 处理JSON的实例详解 真的好简单,灰常简单 import os, io, sys, re, time, base64, json import webbrowser, urllib.request def main(): "main function" url = "http://m.weather.com.cn/data/101010100.html" stdout=urllib.request.urlopen(url) weatherInfo=

  • pytorch中的transforms模块实例详解

    pytorch中的transforms模块中包含了很多种对图像数据进行变换的函数,这些都是在我们进行图像数据读入步骤中必不可少的,下面我们讲解几种最常用的函数,详细的内容还请参考pytorch官方文档(放在文末). data_transforms = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms

  • Node.js Domain 模块实例详解

    Node.js Domain(域) 简化异步代码的异常处理,可以捕捉处理try catch无法捕捉的异常. Domain 模块可分为隐式绑定和显式绑定: 隐式绑定: 把在domain上下文中定义的变量,自动绑定到domain对象 显式绑定: 把不是在domain上下文中定义的变量,以代码的方式绑定到domain对象 创建domain.js,代码如下: var eventEmitter=require("events").EventEmitter; var domain=require(

  • Python matplotlib的spines模块实例详解

    目录 spines 模块详解 Spine 类 Spine 类的定义 Spine 类参数 创建 Spine 对象的实例 创建直线型 Spine 并添加到 axes spine_type=‘circle’ 默认的 Spine 对象的存储和调用 Spine 对象的方法 set_position(self, position) set_bounds() 用法示例 创建多个 yaxis 偏移 axis 多 vertices 的 path 总结 spines 模块详解 matplotlib 设计了一个 sp

  • python3对接mysql数据库实例详解

    Python3 MySQL数据库连接,假设MySQL数据库已经安装好了,并创建好了数据库(后面抽点时间将数据库的安装总结下). PyMySQL是Python3中用于连接MySQL服务器的一个库,Python2中则使用mysqldb.因此你在编码之前一定要看清楚自己使用的是哪个版本,博主刚开始没有意识到这个导致后面运行时报错,花了好久才定位出原因,大家在用的时候一定要引以为戒. 这里再回顾下查看python版本号的操作:命令行输入python前提是已经将python安装路径加入了系统环境变量,配置

  • Python必知必会之os模块实例详解

    目录 Python os 模块 os模块的常用操作 os.path模块 os.open()模块 总结 Python os 模块 os是“operating system”的缩写,os模块提供各种 Python 程序与操作系统进行交互的接口,使用os模块,一方面可以方便地与操作系统进行交互,另一方面页可以极大增强代码的可移植性 注意 一定要使用 import os 而不是 from os import * .这将避免内建的 open() 函数被 os.open() 隐式替换掉,因为它们的使用方式大

随机推荐