python opencv实现图片旋转矩形分割

有时候需要对有角度的矩形框内图像从原图片中分割出来。这里的程序思想是,先将图片进行矩形角度的旋转,使有角度的矩形处于水平状态后,根据原来坐标分割图片。
参考:python opencv实现旋转矩形框裁减功能

修改原来的程序:

1.旋转函数的输入仅为矩形的四点坐标
2.角度由公式计算出来
3.矩形四点pt1,pt2,pt3,pt4由txt文件读入
4.在旋转程序中还处理了顺时针和逆时针及出现矩形框翻转的问题。

代码:

# -*- coding:utf-8 -*-
import cv2
from math import *
import numpy as np
import time,math
import os
import re

'''旋转图像并剪裁'''
def rotate(
    img, # 图片
    pt1, pt2, pt3, pt4
):
  print pt1,pt2,pt3,pt4
  withRect = math.sqrt((pt4[0] - pt1[0]) ** 2 + (pt4[1] - pt1[1]) ** 2) # 矩形框的宽度
  heightRect = math.sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) **2)
  print withRect,heightRect
  angle = acos((pt4[0] - pt1[0]) / withRect) * (180 / math.pi) # 矩形框旋转角度
  print angle

  if pt4[1]>pt1[1]:
    print "顺时针旋转"
  else:
    print "逆时针旋转"
    angle=-angle

  height = img.shape[0] # 原始图像高度
  width = img.shape[1]  # 原始图像宽度
  rotateMat = cv2.getRotationMatrix2D((width / 2, height / 2), angle, 1) # 按angle角度旋转图像
  heightNew = int(width * fabs(sin(radians(angle))) + height * fabs(cos(radians(angle))))
  widthNew = int(height * fabs(sin(radians(angle))) + width * fabs(cos(radians(angle))))

  rotateMat[0, 2] += (widthNew - width) / 2
  rotateMat[1, 2] += (heightNew - height) / 2
  imgRotation = cv2.warpAffine(img, rotateMat, (widthNew, heightNew), borderValue=(255, 255, 255))
  cv2.imshow('rotateImg2', imgRotation)
  cv2.waitKey(0)

  # 旋转后图像的四点坐标
  [[pt1[0]], [pt1[1]]] = np.dot(rotateMat, np.array([[pt1[0]], [pt1[1]], [1]]))
  [[pt3[0]], [pt3[1]]] = np.dot(rotateMat, np.array([[pt3[0]], [pt3[1]], [1]]))
  [[pt2[0]], [pt2[1]]] = np.dot(rotateMat, np.array([[pt2[0]], [pt2[1]], [1]]))
  [[pt4[0]], [pt4[1]]] = np.dot(rotateMat, np.array([[pt4[0]], [pt4[1]], [1]]))

  # 处理反转的情况
  if pt2[1]>pt4[1]:
    pt2[1],pt4[1]=pt4[1],pt2[1]
  if pt1[0]>pt3[0]:
    pt1[0],pt3[0]=pt3[0],pt1[0]

  imgOut = imgRotation[int(pt2[1]):int(pt4[1]), int(pt1[0]):int(pt3[0])]
  cv2.imshow("imgOut", imgOut) # 裁减得到的旋转矩形框
  cv2.waitKey(0)
  return imgRotation # rotated image

# 根据四点画原矩形
def drawRect(img,pt1,pt2,pt3,pt4,color,lineWidth):
  cv2.line(img, pt1, pt2, color, lineWidth)
  cv2.line(img, pt2, pt3, color, lineWidth)
  cv2.line(img, pt3, pt4, color, lineWidth)
  cv2.line(img, pt1, pt4, color, lineWidth)

# 读出文件中的坐标值
def ReadTxt(directory,imageName,last):
  fileTxt=directory+"//rawLabel//"+imageName[:7]+last # txt文件名
  getTxt=open(fileTxt, 'r') # 打开txt文件
  lines = getTxt.readlines()
  length=len(lines)
  for i in range(0,length,4):
    pt2=list(map(float,lines[i].split(' ')[:2]))
    pt1=list(map(float,lines[i+1].split(' ')[:2]))
    pt4=list(map(float,lines[i+2].split(' ')[:2]))
    pt3=list(map(float,re.split('\n| ',lines[i+3])[:2]))
    # float转int

    pt2=list(map(int,pt2))
    pt1=list(map(int,pt1))
    pt4=list(map(int,pt4))
    pt3=list(map(int,pt3))

    imgSrc = cv2.imread(imageName)
    drawRect(imgSrc, tuple(pt1),tuple(pt2),tuple(pt3),tuple(pt4), (0, 0, 255), 2)
    cv2.imshow("img", imgSrc)
    cv2.waitKey(0)
    rotate(imgSrc,pt1,pt2,pt3,pt4)

if __name__=="__main__":
  directory = "G://grasp//grapCode//trainImage//jpg//4"
  last = 'cneg.txt'
  imageName="pcd0247r.png"
  ReadTxt(directory,imageName,last)

原带角度的矩形框:

旋转矩形框:

分割:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python opencv旋转图像(保持图像不被裁减)

    本文实例为大家分享了python opencv旋转图像的具体代码,保持图像不被裁减,供大家参考,具体内容如下 # -*- coding:gb2312 -*- import cv2 from math import * import numpy as np img = cv2.imread("3-2.jpg") height,width=img.shape[:2] degree=45 #旋转后的尺寸 heightNew=int(width*fabs(sin(radians(degree)

  • OpenCV+python手势识别框架和实例讲解

    基于OpenCV2.4.8和 python 2.7实现简单的手势识别. 以下为基本步骤 1.去除背景,提取手的轮廓 2. RGB->YUV,同时计算直方图 3.进行形态学滤波,提取感兴趣的区域 4.找到二值化的图像轮廓 5.找到最大的手型轮廓 6.找到手型轮廓的凸包 7.标记手指和手掌 8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状 提取手的轮廓 cv2.findContours() 找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点

  • python3+opencv3识别图片中的物体并截取的方法

    如下所示: 运行环境:python3.6.4 opencv3.4.0 # -*- coding:utf-8 -*- """ Note: 使用Python和OpenCV检测图像中的物体并将物体裁剪下来 """ import cv2 import numpy as np # step1:加载图片,转成灰度图 image = cv2.imread("353.jpg") gray = cv2.cvtColor(image, cv2.C

  • opencv python 傅里叶变换的使用

    理论 傅立叶变换用于分析各种滤波器的频率特性,对于图像,2D离散傅里叶变换(DFT)用于找到频域.快速傅里叶变换(FFT)的快速算法用于计算DFT. 于一个正弦信号,x(t)=Asin(2πft),我们可以说 f 是信号的频率,如果它的频率域被接受,我们可以看到 f 的峰值.如果信号被采样来形成一个离散信号,我们得到相同的频率域,但是在[−π,π] or [0,2π]范围内是周期性的 (or [0,N] for N-point DFT). 可以将图像视为在两个方向上采样的信号.因此,在X和Y方向

  • Python OpenCV读取png图像转成jpg图像存储的方法

    如下所示: import os import cv2 import sys import numpy as np path = "F:\\ImageLib\\VRWorks_360_Video _SDK_1.1\\footage14\\" print(path) for filename in os.listdir(path): if os.path.splitext(filename)[1] == '.png': # print(filename) img = cv2.imread(

  • 使用python写的opencv实时监测和解析二维码和条形码

    今天,我实现了一个很有趣的demo,它可以在视频里找到并解析二维码,然后把解析的内容实时在屏幕上显示出来. 然后我们直入主题,首先你得确保你装了opencv,python,zbar等环境.然后这个教程对于学过opencv的人可能更好理解,但是没学过也无妨,到时候也可以直接用. 比如我的电脑上的环境是opencv2.4.x,python2.7,和最新的zbar,在Ubuntu 12.12的系统下运行的 假设你的opencv已经安装好了,那么我们就可以安装zbar 你可以先更新一下 sudo apt

  • 对python opencv 添加文字 cv2.putText 的各参数介绍

    如下所示: cv2.putText(img, str(i), (123,456)), font, 2, (0,255,0), 3) 各参数依次是:图片,添加的文字,左上角坐标,字体,字体大小,颜色,字体粗细 其中字体可以选择 FONT_HERSHEY_SIMPLEX Python: cv.FONT_HERSHEY_SIMPLEX normal size sans-serif font FONT_HERSHEY_PLAIN Python: cv.FONT_HERSHEY_PLAIN small s

  • Python+OpenCV感兴趣区域ROI提取方法

    方法一:使用轮廓 步骤1 """src为原图""" ROI = np.zeros(src.shape, np.uint8) #感兴趣区域ROI proimage = src.copy() #复制原图 """提取轮廓""" proimage=cv2.cvtColor(proimage,cv2.COLOR_BGR2GRAY) #转换成灰度图 proimage=cv2.adaptiveThre

  • 查看python下OpenCV版本的方法

    在命令行输入以下代码: python import cv2 cv2.__version__ 以上这篇查看python下OpenCV版本的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python opencv实现图片旋转矩形分割

    有时候需要对有角度的矩形框内图像从原图片中分割出来.这里的程序思想是,先将图片进行矩形角度的旋转,使有角度的矩形处于水平状态后,根据原来坐标分割图片. 参考:python opencv实现旋转矩形框裁减功能 修改原来的程序: 1.旋转函数的输入仅为矩形的四点坐标 2.角度由公式计算出来 3.矩形四点pt1,pt2,pt3,pt4由txt文件读入 4.在旋转程序中还处理了顺时针和逆时针及出现矩形框翻转的问题. 代码: # -*- coding:utf-8 -*- import cv2 from m

  • Python+opencv 实现图片文字的分割的方法示例

    实现步骤: 1.通过水平投影对图形进行水平分割,获取每一行的图像: 2.通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符: 先简单介绍一下投影法:分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 下面通过Python+opencv来实现该功能 首先来实现水平投影: import cv2 impor

  • Python+OpenCV 实现图片无损旋转90°且无黑边

    0. 引言 有如上一张图片,在以往的图像旋转处理中,往往得到如图所示的图片. 然而,在进行一些其他图像处理或者图像展示时,黑边带来了一些不便.本文解决图片旋转后出现黑边的问题,实现了图片尺寸不变的旋转(以上提到的黑边是图片的一部分). 1. 方法流程 (1)旋转图片,得到有黑边的旋转图片. (2)找出图片区域(不含黑边)的位置. (3)创建一个空图片(其实是矩阵). (4)将图片区域搬到此空图片. 2. 程序 #!/usr/bin/python # -*- coding: UTF-8 -*- "

  • python opencv 读取图片 返回图片某像素点的b,g,r值的实现方法

    如下所示: #coding=utf-8 #读取图片 返回图片某像素点的b,g,r值 import cv2 import numpy as np img=cv2.imread('./o.jpg') px=img[10,10] print px blue=img[10,10,0] print blue green=img[10,10,1] print blue red=img[10,10,2] print blue 以上这篇python opencv 读取图片 返回图片某像素点的b,g,r值的实现方

  • 对Python+opencv将图片生成视频的实例详解

    如下所示: import cv2 fps = 16 size = (width,height) videowriter = cv2.VideoWriter("a.avi",cv2.VideoWriter_fourcc('M','J','P','G'),fps,size) for i in range(1,200): img = cv2.imread('%d'.jpg % i) videowriter.write(img) 以上这篇对Python+opencv将图片生成视频的实例详解就是

  • python opencv实现图片缺陷检测(讲解直方图以及相关系数对比法)

    一.利用直方图的方式进行批量的图片缺陷检测(方法简单) 二.步骤(完整代码见最后) 2.1灰度转换(将原图和要检测对比的图分开灰度化) 灰度化的作用是因为后面的直方图比较需要以像素256为基准进行相关性比较 img = cv2.imread("0.bmp") #原图灰度转换 gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) #循环要检测的图,均灰度化 for i in range(1, 6): t1=cv2.cvtColor(cv2.imread

  • 使用c++实现OpenCV绘制图形旋转矩形

    目录 功能函数 // 绘制旋转矩形 void DrawRotatedRect(cv::Mat mask,const cv::RotatedRect &rotatedrect,const cv::Scalar &color,int thickness, int lineType) { // 提取旋转矩形的四个角点 cv::Point2f ps[4]; rotatedrect.points(ps); // 构建轮廓线 std::vector<std::vector<cv::Poin

  • Python Opencv实现图片切割处理

    本文实例为大家分享了Python Opencv实现图片的切割处理,供大家参考,具体内容如下 Opencv对图片的切割: 方法一: import os from PIL import Image def splitimage(src, rownum, colnum, dstpath):     img = Image.open(src)     w, h = img.size     if rownum <= h and colnum <= w:         print('Original

  • Python+OpenCV实现图片及视频中选定区域颜色识别

    近期,需要实现检测摄像头中指定坐标区域内的主体颜色,通过查阅大量相关的内容,最终实现代码及效果如下,具体的实现步骤在代码中都详细注释,代码还可以进一步优化,但提升有限. 主要实现过程:按不同颜色的取值范围,对图像进行循环遍历,转换为灰度图,将本次遍历的颜色像素转换为白色,对白色部分进行膨胀处理,使其更加连续,计算白色部分外轮廓包围的面积累加求和,比较每种颜色围起来面积,保存最大值及其颜色,所有颜色遍历完后,返回最大值对应的颜色,显示在图像上 如果有类似的颜色识别的任务,可参考以下代码修改后实现具

  • python OpenCV计算图片相似度的5种算法

    目录 5种算法 参考文章: 原始两张图片: 代码运行结果如下. 5种算法 值哈希算法.差值哈希算法和感知哈希算法都是值越小,相似度越高,取值为0-64,即汉明距离中,64位的hash值有多少不同. 三直方图和单通道直方图的值为0-1,值越大,相似度越高. 源代码如下: import cv2 import numpy as np from PIL import Image import requests from io import BytesIO import matplotlib matplo

随机推荐