python编程实现希尔排序

观察一下”插入排序“:其实不难发现她有个缺点:

  如果当数据是”5, 4, 3, 2, 1“的时候,此时我们将“无序块”中的记录插入到“有序块”时,估计俺们要崩盘,每次插入都要移动位置,此时插入排序的效率可想而知。

  shell根据这个弱点进行了算法改进,融入了一种叫做“缩小增量排序法”的思想,其实也蛮简单的,不过有点注意的就是:

增量不是乱取,而是有规律可循的。

希尔排序时效分析很难,关键码的比较次数与记录移动次数依赖于增量因子序列d的选取,特定情况下可以准确估算出关键码的比较次数和记录的移动次数。目前还没有人给出选取最好的增量因子序列的方法。增量因子序列可以有各种取法,有取奇数的,也有取质数的,但需要注意:增量因子中除1 外没有公因子,且最后一个增量因子必须为1。希尔排序方法是一个不稳定的排序方法。

首先要明确一下增量的取法(这里图片是copy别人博客的,增量是奇数,我下面的编程用的是偶数):

第一次增量的取法为: d=count/2;

第二次增量的取法为:  d=(count/2)/2;

最后一直到: d=1;

好,注意看图了,第一趟的增量d1=5, 将10个待排记录分为5个子序列,分别进行直接插入排序,结果为(13, 27, 49, 55, 04, 49, 38, 65, 97, 76)

第二趟的增量d2=3, 将10个待排记录分为3个子序列,分别进行直接插入排序,结果为(13, 04, 49, 38, 27, 49, 55, 65, 97, 76)

第三趟的增量d3=1, 对整个序列进行直接插入排序,最后结果为(04, 13, 27, 38, 49, 49, 55, 65, 76, 97)

重点来了。当增量减小到1时,此时序列已基本有序,希尔排序的最后一趟就是接近最好情况的直接插入排序。可将前面各趟的"宏观"调整看成是最后一趟的预处理,比只做一次直接插入排序效率更高。

本人是学python的,今天用python实现了希尔排序。

def ShellInsetSort(array, len_array, dk): # 直接插入排序
 for i in range(dk, len_array): # 从下标为dk的数进行插入排序
 position = i
 current_val = array[position] # 要插入的数

 index = i
 j = int(index / dk) # index与dk的商
 index = index - j * dk

 # while True: # 找到第一个的下标,在增量为dk中,第一个的下标index必然 0<=index<dk
 # index = index - dk
 # if 0<=index and index <dk:
 # break

 # position>index,要插入的数的下标必须得大于第一个下标
 while position > index and current_val < array[position-dk]:
 array[position] = array[position-dk] # 往后移动
 position = position-dk
 else:
 array[position] = current_val

def ShellSort(array, len_array): # 希尔排序
 dk = int(len_array/2) # 增量
 while(dk >= 1):
 ShellInsetSort(array, len_array, dk)
 print(">>:",array)
 dk = int(dk/2)

if __name__ == "__main__":
 array = [49, 38, 65, 97, 76, 13, 27, 49, 55, 4]
 print(">:", array)
 ShellSort(array, len(array))

输出:

>: [49, 38, 65, 97, 76, 13, 27, 49, 55, 4]
>>: [13, 27, 49, 55, 4, 49, 38, 65, 97, 76]
>>: [4, 27, 13, 49, 38, 55, 49, 65, 97, 76]
>>: [4, 13, 27, 38, 49, 49, 55, 65, 76, 97]

首先你得先会插入排序,不会你必然看不懂。

插入排序,即是对上图三个黄色框中的数进行插入排序。举个例子:13,55,38,76

直接看55,55<13, 不用移动。接着看38,38<55,那么55后移,数据变为[13,55,55,76],接着比较13<38, 那么38替换55,变成[13,38,55,76]。其它同理,略。

这里有个问题,比如第二个黄色框[27,4,65],4<27, 那27往后移,接着4就替换第一个,数据变成[4,27,65],但是计算机怎么知道4就是在第一个啊??

我的做法是,先找出[27,4,65]第一个数的下标,在这个例子中27的下标为1。当要插入的数的下标大于第一个下标1时,才可以往后移,前一个数不可以往后移有两种情况,一种是前面有数据,且小于要插入的数,那你只能插在它后面。另一种,很重要,当要插入数比前面所有数都小时,那插入数肯定是放在第一个,此时要插入数的下标=第一个数的下标。(这段话,感觉初学者应该不大懂……)

为了找到第一个数的下标,最开始想的是用循环,一直到最前面:

while True: # 找到第一个的下标,在增量为dk中,第一个的下标index必然 0<=index<dk
 index = index - dk
 if 0<=index and index <dk:
 break

在Debug时,发现用循环太浪费时间了,特别是当增量d=1时,直接插入排序为了插入列表最后一个数,得循环减1,直到第一个数的下标,后来我学聪明了,用下面的方法:

j = int(index / dk) # index与dk的商
index = index - j * dk

时间复杂度:

希尔排序的时间复杂度是所取增量序列的函数,尚难准确分析。有文献指出,当增量序列为d[k]=2^(t-k+1)时,希尔排序的时间复杂度为O(n^1.5), 其中t为排序趟数。

稳定性: 不稳定

希尔排序效果:

参考资料: 编程是我自己实现的。建议Debug看看运行过程

c++中八大排序算法

视觉直观感受若干常用排序算法

C#七大经典排序算法系列(下)

1.非系统的学习也是在浪费时间 2.做一个会欣赏美,懂艺术,会艺术的技术人

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python编程实现归并排序

    因为上个星期leetcode的一道题(Median of Two Sorted Arrays)所以想仔细了解一下归并排序的实现. 还是先阐述一下排序思路: 首先归并排序使用了二分法,归根到底的思想还是分而治之.拿到一个长数组,将其不停的分为左边和右边两份,然后以此递归分下去.然后再将她们按照两个有序数组的样子合并起来.这样说起来可能很难理解,于是给出一张我画的图. 这里显示了归并排序的第一步,将数组按照middle进行递归拆分,最后分到最细之后再将其使用对两个有序数组进行排序的方法对其进行排序.

  • python里对list中的整数求平均并排序

    问题 定义一个int型的一维数组,包含40个元素,用来存储每个学员的成绩,循环产生40个0~100之间的随机整数, (1)将它们存储到一维数组中,然后统计成绩低于平均分的学员的人数,并输出出来. (2)将这40个成绩按照从高到低的顺序输出出来. 解决(python) #! /usr/bin python #coding:utf-8 from __future__ import division #实现精确的除法,例如4/3=1.333333 import random def make_scor

  • python sort、sorted高级排序技巧

    Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列. 1)排序基础 简单的升序排序是非常容易的.只需要调用sorted()方法.它返回一个新的list,新的list的元素基于小于运算符(__lt__)来排序. 复制代码 代码如下: >>> sorted([5, 2, 3, 1, 4]) [1, 2, 3, 4, 5] 你也可以使用list.sort()方法来排序,此时list本身将被修改.通常此方法不如s

  • Python中字典(dict)和列表(list)的排序方法实例

    一.对列表(list)进行排序 推荐的排序方式是使用内建的sort()方法,速度最快而且属于稳定排序 复制代码 代码如下: >>> a = [1,9,3,7,2,0,5]>>> a.sort()>>> print a[0, 1, 2, 3, 5, 7, 9]>>> a.sort(reverse=True)>>> print a[9, 7, 5, 3, 2, 1, 0]>>> b = ['e','a'

  • python 快速排序代码

    复制代码 代码如下: def quick_sort(ls): return [] if ls == [] else quick_sort([y for y in ls[1:] if y < ls[0]]) + [ls[0]] + quick_sort([y for y in ls[1:] if y >= ls[0]]) if __name__ == '__main__': l1 = [3,56,8,1,34,56,89,234,56,231,45,90,33,66,88,11,22] l2 =

  • Python中对列表排序实例

    很多时候,我们需要对List进行排序,Python提供了两个方法,对给定的List L进行排序: 方法1.用List的成员函数sort进行排序 方法2.用built-in函数sorted进行排序(从2.4开始) 这两种方法使用起来差不多,以第一种为例进行讲解: 从Python2.4开始,sort方法有了三个可选的参数,Python Library Reference里是这样描述的 复制代码 代码如下: cmp:cmp specifies a custom comparison function

  • python字符串排序方法

    本文以实例形式简述了Python实现字符串排序的方法,是Python程序设计中一个非常实用的技巧.分享给大家供大家参考之用.具体方法如下: 一般情况下,python中对一个字符串排序相当麻烦: 一.python中的字符串类型是不允许直接改变元素的.必须先把要排序的字符串放在容器里,如list. 二.python中的list容器的sort()函数没返回值. 所以在python中对字符串排序往往需要好几行代码. 具体实现方法如下: >>> s = "string" >

  • python常见排序算法基础教程

    前言:前两天腾讯笔试受到1万点暴击,感觉浪费我两天时间去牛客网做题--这篇博客介绍几种简单/常见的排序算法,算是整理下. 时间复杂度 (1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了.并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中的语句执行次数称为语句频度或时间频度.记为T(n). (2)时间复

  • Python编程中归并排序算法的实现步骤详解

    基本思想:归并排序是一种典型的分治思想,把一个无序列表一分为二,对每个子序列再一分为二,继续下去,直到无法再进行划分为止.然后,就开始合并的过程,对每个子序列和另外一个子序列的元素进行比较,依次把小元素放入结果序列中进行合并,最终完成归并排序. 归并操作过程: 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列 设定两个指针,最初位置分别为两个已经排序序列的起始位置 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置 重复步骤3直到某一指针达到序列尾

  • python 实现归并排序算法

    理论不多说: 复制代码 代码如下: #!/usr/bin/python import sys def merge(array, q, p, r): left_array = array[q:p+1] right_array = array[p+1:r+1] left_array_num = len(left_array) right_array_num = len(right_array) i, j , k= [0, 0, q] while i < left_array_num and j <

随机推荐