Python opencv实现人眼/人脸识别以及实时打码处理

利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克。

系统环境:Windows 7 + Python 3.6.3 + opencv 3.4.2

一、系统、资源准备

要想达成该目标,需要满足一下几个条件:

  • 找一台带有摄像头的电脑,一般笔记本即可;
  • 需配有Python3,并安装NumPy包、opencv;
  • 需要有已经训练好的分类器,用于识别视频中的人脸、人眼等,如无分类器,可以点击这里下载:haarcascades分类器

二、动手做

1、导入相关包、设置视频格式、调用摄像头、指定分类器

import numpy as np
import cv2

fourcc = cv2.VideoWriter_fourcc("D", "I", "B", " ")
out = cv2.VideoWriter('frame_mosic.MP4',fourcc, 20.0, (640,480))

cv2.namedWindow("CaptureFace")
#调用摄像头
cap=cv2.VideoCapture(0)
#人眼识别器分类器
classfier=cv2.CascadeClassifier("../haarcascades/haarcascade_eye_tree_eyeglasses.xml")

2、逐帧调用图像,并实时处理

从摄像头读取一帧图像后,先转化为灰度图像,然后利用指定的分类器识别出我们需要的内容,接着对该部分内容利用高斯噪声进行覆盖,以达成马赛克的目的。

代码如下:

while cap.isOpened():
 read,frame=cap.read()
 if not read:
  break
 #灰度转换
 grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
 #人脸检测
 Rects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32))
 if len(Rects) > 0:
  for Rect in Rects:
    x, y, w, h = Rect
    # 打码:使用高斯噪声替换识别出来的人眼所对应的像素值
    frame[y+10:y+h-10,x:x+w,0]=np.random.normal(size=(h-20,w))
    frame[y+10:y+h-10,x:x+w,1]=np.random.normal(size=(h-20,w))
    frame[y+10:y+h-10,x:x+w,2]=np.random.normal(size=(h-20,w))

 cv2.imshow("CaptureFace",frame)
 if cv2.waitKey(5)&0xFF==ord('q'):
  break
 # 保存视频
 out.write(frame)
#释放相关资源
cap.release()
out.release()
cv2.destroyAllWindows()

3、观察效果

代码调用摄像头并在窗口进行了显示,可以实时观察到图像处理的效果,如图:

并将结果保存为视频,方便随时查看:

完整代码如下:

# -*- coding: utf-8 -*-

import numpy as np
import cv2

fourcc = cv2.VideoWriter_fourcc("D", "I", "B", " ")
out = cv2.VideoWriter('frame_mosic.MP4',fourcc, 20.0, (640,480))

cv2.namedWindow("CaptureFace")
#调用摄像头
cap=cv2.VideoCapture(0)
#人眼识别器分类器
classfier=cv2.CascadeClassifier("../haarcascades/haarcascade_eye_tree_eyeglasses.xml")
while cap.isOpened():
 read,frame=cap.read()
 if not read:
  break
 #灰度转换
 grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
 #人脸检测
 Rects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32))
 if len(Rects) > 0:
  for Rect in Rects:
    x, y, w, h = Rect
    # 打码:使用高斯噪声替换识别出来的人眼所对应的像素值
    frame[y+10:y+h-10,x:x+w,0]=np.random.normal(size=(h-20,w))
    frame[y+10:y+h-10,x:x+w,1]=np.random.normal(size=(h-20,w))
    frame[y+10:y+h-10,x:x+w,2]=np.random.normal(size=(h-20,w))

 cv2.imshow("CaptureFace",frame)
 if cv2.waitKey(5)&0xFF==ord('q'):
  break
 # 保存视频
 out.write(frame)
#释放相关资源
cap.release()
out.release()
cv2.destroyAllWindows()

利用opencv提供Python接口,可以很方便的进行图像、视频处理方面的学习研究,实在是很方便。这里把近期所学做个简单应用,后续再学习更深入的知识。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python3结合Dlib实现人脸识别和剪切

    0.引言 利用python开发,借助Dlib库进行人脸识别,然后将检测到的人脸剪切下来,依次排序显示在新的图像上: 实现的效果如下图所示,将图1原图中的6张人脸检测出来,然后剪切下来,在图像窗口中依次输出显示人脸: 实现比较简单,代码量也比较少,适合入门或者兴趣学习. 图1 原图和处理后得到的图像窗口 1.开发环境 python: 3.6.3 dlib: 19.7 OpenCv, numpy import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • Python3利用Dlib19.7实现摄像头人脸识别的方法

    0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地,然后提取构建预设人脸特征: 根据抠取的 / 已有的同一个人多张人脸图片提取128D特征值,然后计算该人的128D特征均值: 然后和摄像头中实时获取到的人脸提取出的特征值,计算欧氏距离,判定是否为同一张人脸: 人脸识别 / face recognition的说明: wikipedia 关于人脸识别系统 / fac

  • Python 40行代码实现人脸识别功能

    前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • python实现人脸识别代码

    从实时视频流中识别出人脸区域,从原理上看,其依然属于机器学习的领域之一,本质上与谷歌利用深度学习识别出猫没有什么区别.程序通过大量的人脸图片数据进行训练,利用数学算法建立建立可靠的人脸特征模型,如此即可识别出人脸.幸运的是,这些工作OpenCV已经帮我们做了,我们只需调用对应的API函数即可,先给出代码: #-*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name

  • Python实现PS滤镜中马赛克效果示例

    本文实例讲述了Python实现PS滤镜中马赛克效果.分享给大家供大家参考,具体如下: 这里利用 Python 实现PS 滤镜中的马赛克效果,具体的算法原理和效果可以参考附录说明,Python示例代码如下: from skimage import img_as_float import matplotlib.pyplot as plt from skimage import io import random import numpy as np file_name='D:/Visual Effec

  • Python opencv实现人眼/人脸识别以及实时打码处理

    利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克. 系统环境:Windows 7 + Python 3.6.3 + opencv 3.4.2 一.系统.资源准备 要想达成该目标,需要满足一下几个条件: 找一台带有摄像头的电脑,一般笔记本即可: 需配有Python3,并安装NumPy包.opencv: 需要有已经训练好的分类器,用于识别视频中的人脸.人眼等,如无分类器,可以点击这里下载:haarcascades分类器 二.动手做 1.导入相关包.设置视频格式.

  • 使用Python实现简单的人脸识别功能(附源码)

    目录 前言 一.首先 二.接下来 1.对照人脸获取 2. 通过算法建立对照模型 3.识别 前言 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比

  • Python基于opencv实现的人脸识别(适合初学者)

    目录 一点背景知识 一.人脸识别步骤 二.直接上代码 (1)录入人脸.py (2)数据训练.py (3)进行识别.py 三.运行过程及结果 1.获取人脸照片于目标文件中 2.进行数据训练,获得trainer.yml文件中的数据 3.进行识别 总结 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有

  • 基于Python实现简单的人脸识别系统

    目录 前言 基本原理 代码实现 创建虚拟环境 安装必要的库 前言 最近又多了不少朋友关注,先在这里谢谢大家.关注我的朋友大多数都是大学生,而且我简单看了一下,低年级的大学生居多,大多数都是为了完成课程设计,作为一个过来人,还是希望大家平时能多抽出点时间学习一下,这种临时抱佛脚的策略要少用嗷.今天我们来python实现一个人脸识别系统,主要是借助了dlib这个库,相当于我们直接调用现成的库来进行人脸识别,就省去了之前教程中的数据收集和模型训练的步骤了. B站视频:用300行代码实现人脸识别系统_哔

  • Python基于Dlib的人脸识别系统的实现

    之前已经介绍过人脸识别的基础概念,以及基于opencv的实现方式,今天,我们使用dlib来提取128维的人脸嵌入,并使用k临近值方法来实现人脸识别. 人脸识别系统的实现流程与之前是一样的,只是这里我们借助了dlib和face_recognition这两个库来实现.face_recognition是对dlib库的包装,使对dlib的使用更方便.所以首先要安装这2个库. pip3 install dlib pip3 install face_recognition 然后,还要安装imutils库 p

  • 详解基于Facecognition+Opencv快速搭建人脸识别及跟踪应用

    人脸识别技术已经相当成熟,面对满大街的人脸识别应用,像单位门禁.刷脸打卡.App解锁.刷脸支付.口罩检测........ 作为一个图像处理的爱好者,怎能放过人脸识别这一环呢!调研开搞,发现了超实用的Facecognition!现在和大家分享下~~ Facecognition人脸识别原理大体可分为: 1.通过hog算子定位人脸,也可以用cnn模型,但本文没试过: 2.Dlib有专门的函数和模型,实现人脸68个特征点的定位.通过图像的几何变换(仿射.旋转.缩放),使各个特征点对齐(将眼睛.嘴等部位移

  • 用Python实现简单的人脸识别功能步骤详解

    前言 让我的电脑认识我,我的电脑只有认识我,才配称之为我的电脑! 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花

  • Python+Opencv实战之人脸追踪详解

    目录 前言 人脸追踪技术简介 使用基于 dlib DCF 的跟踪器进行人脸跟踪 使用基于 dlib DCF 的跟踪器进行对象跟踪 小结 前言 人脸处理是人工智能中的一个热门话题,人脸处理可以使用计算机视觉算法从人脸中自动提取大量信息,例如身份.意图和情感:而目标跟踪试图估计目标在整个视频序列中的轨迹,其中只有目标的初始位置是已知的,将这两者进行结合将产生许多有趣的应用.由于外观变化.遮挡.快速运动.运动模糊和比例变化等多种因素,人脸追踪非常具有挑战性. 人脸追踪技术简介 基于判别相关滤波器 (d

  • Python+OpenCV手势检测与识别Mediapipe基础篇

    目录 前言 项目效果图 认识Mediapipe 项目环境 代码 核心代码 视频帧率计算 完整代码 项目输出 结语 前言 本篇文章适合刚入门OpenCV的同学们.文章将介绍如何使用Python利用OpenCV图像捕捉,配合强大的Mediapipe库来实现手势检测与识别:本系列后续还会继续更新Mediapipe手势的各种衍生项目,还请多多关注! 项目效果图 视频捕捉帧数稳定在(25-30) 认识Mediapipe 项目的实现,核心是强大的Mediapipe ,它是google的一个开源项目: 功能

  • OpenCV Java实现人脸识别和裁剪功能

    本文实例为大家分享了OpenCV Java实现人脸识别和裁剪的具体代码,供大家参考,具体内容如下 安装及配置 1.首先安装OpenCV,地址 这里我下载的是Windows版的3.4.5 然后安装即可-- 2.Eclipse配置OpenCV Window->Preferences->Java->User Libraries New输入你的Libraries名 这里我的安装目录是D:\OpenCV,所以是: 然后引入dll,我是64位机子,所以是: Ok,下面创建Java项目做Java与Op

随机推荐