浅析Python数据处理

Numpy、Pandas是Python数据处理中经常用到的两个框架,都是采用C语言编写,所以运算速度快。Matplotlib是Python的的画图工具,可以把之前处理后的数据通过图像绘制出来。之前只是看过语法,没有系统学习总结过,本博文总结了这三个框架的API。

以下是这三个框架的的简单介绍和区别:

  • Numpy:经常用于数据生成和一些运算
  • Pandas:基于Numpy构建的,是Numpy的升级版本
  • Matplotlib:Python中强大的绘图工具

Numpy

Numpy快速入门教程可参考:Numpy tutorial

Numpy属性

ndarray.ndim:维度

ndarray.shape:行数和列数,例如(3, 5)

ndarray.size:元素的个数

ndarray.dtype:元素类型

Numpy创建

array(object, dtype=None):使用Python的list或者tuple创建数据

zeors(shape, dtype=float):创建全为0的数据

ones(shape, dtype=None):创建全为1的数据

empty(shape, dtype=float):创建没有初始化的数据

arange([start, ]stop, [step, ]dtype=None):创建固定间隔的数据段

linspace(start, stop, num=50, dtype=None):在给定的范围,均匀的创建数据

Numpy运算

加、减:a + b、a - b

乘:b*2、10*np.sin(a)

次方:b**2

判断:a<35,输出True或False的数组

矩阵乘:np.dot(A,B) 或 A.dot(B)

其他:+=、-+、sin、cos、exp

Numpy索引

数组索引方式:A[1, 1]

切片:A[1, 1:3]

迭代:for item in A.flat

Numpy其他

reshape(a, newshape):改变数据形状,不会对原始数据进行修改,返回一组新数据

resize(a, new_shape):改变数据形状,会对原始数据进行修改,不返回数据

ravel(a):将成一维返回

vstack(tup):上下合并

hstack(tup):左右合并

hsplit(ary, indices_or_sections):水平分割n份

vsplit(ary, indices_or_sections):垂直分割n份

copy(a):深度拷贝

Pandas

Pandas快速入门教程可参考:10 Minutes to pandas

Pandas数据结构

Pandas的数据结构有两种:Series和DataFrame。

Series:索引在左边,值在右边。创建方式如下:

In [4]: s = pd.Series([1,3,5,np.nan,6,8])
In [5]: s
Out[5]:
0  1.0
1  3.0
2  5.0
3  NaN
4  6.0
5  8.0
dtype: float64

DataFrame:是一个表格型的数据结构,既有行索引也有列索引, 它可以被看做由Series组成的大字典。创建方式如下:

In [6]: dates = pd.date_range('20130101', periods=6)

In [7]: dates
Out[7]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
        '2013-01-05', '2013-01-06'],
       dtype='datetime64[ns]', freq='D')

In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

Pandas查看数据

index:索引

columns:列索引

values:值

head(n=5):返回前n项数据

tail(n=5):返回后n项数据

describe():打印出数据的数量、平均值等各项数据

sort_index(axis=1, ascending=False):根据索引排序

sort_values(by='B'):根据索引值排序

Pandas选择数据

数组选择方式:df[‘A']

切片选择方式:df[0:3] 或 df[‘20130102':'20130104']

根据标签选择:df.loc[‘20130102':'20130104',[‘A','B']]

根据位置选择:df.iloc[3:5,0:2]

混合选择:df.ix[:3,[‘A','C']]

条件判断选择:df[df.A > 0]

Pandas处理丢失数据

删除丢失数据的行:df.dropna(how='any')

填充丢失数据:df.fillna(value=5)

数据值是否为NaN:pd.isna(df1)

Pandas合并数据

pd.concat([df1, df2, df3], axis=0):合并df

pd.merge(left, right, on='key'):根据key字段合并

df.append(s, ignore_index=True):添加数据

Pandas导入导出

df.to_csv(‘foo.csv'):保存到csv文件

pd.read_csv(‘foo.csv'):从csv文件读取

df.to_excel(‘foo.xlsx', sheet_name='Sheet1'):保存到excel文件

pd.read_excel(‘foo.xlsx', ‘Sheet1', index_col=None, na_values=[‘NA']):从excel文件读取

Matplotlib

这里只介绍最简单的出图方式:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 随机生成1000个数据
data = pd.Series(np.random.randn(1000),index=np.arange(1000))
# 为了方便观看效果, 我们累加这个数据
data.cumsum()
# pandas 数据可以直接观看其可视化形式
data.plot()
plt.show()

您可能感兴趣的文章:

  • 对python .txt文件读取及数据处理方法总结
  • Python 数据处理库 pandas进阶教程
  • Python 数据处理库 pandas 入门教程基本操作
  • Python数据处理numpy.median的实例讲解
  • python数据处理实战(必看篇)
  • 基于python爬虫数据处理(详解)
  • python实现爬虫统计学校BBS男女比例之数据处理(三)
  • 从零学python系列之数据处理编程实例(二)
  • 从零学python系列之数据处理编程实例(一)
(0)

相关推荐

  • 从零学python系列之数据处理编程实例(一)

    要求:分别以james,julie,mikey,sarah四个学生的名字建立文本文件,分别存储各自的成绩,时间格式都精确为分秒,时间越短成绩越好,分别输出每个学生的无重复的前三个最好成绩,且分秒的分隔符要统一为"." 数据准备:分别建立四个文本文件 james.txt     2-34,3:21,2.34,2.45,3.01,2:01,2:01,3:10,2-22 julie.txt        2.59,2.11,2:11,2:23,3-10,2-23,3:10,3.21,3-21

  • python实现爬虫统计学校BBS男女比例之数据处理(三)

    本文主要介绍了数据处理方面的内容,希望大家仔细阅读. 一.数据分析 得到了以下列字符串开头的文本数据,我们需要进行处理 二.回滚 我们需要对httperror的数据进行再处理 因为代码的原因,具体可见本系列文章(二),会导致文本里面同一个id连续出现几次httperror记录: //httperror265001_266001.txt 265002 httperror 265002 httperror 265002 httperror 265002 httperror 265003 httper

  • Python 数据处理库 pandas进阶教程

    前言 本文紧接着前一篇的入门教程,会介绍一些关于pandas的进阶知识.建议读者在阅读本文之前先看完pandas入门教程. 同样的,本文的测试数据和源码可以在这里获取: Github:pandas_tutorial. 数据访问 在入门教程中,我们已经使用过访问数据的方法.这里我们再集中看一下. 注:这里的数据访问方法既适用于Series,也适用于DataFrame. 基础方法:[]和. 这是两种最直观的方法,任何有面向对象编程经验的人应该都很容易理解.下面是一个代码示例: # select_da

  • 从零学python系列之数据处理编程实例(二)

    在上一节从零学python系列之数据处理编程实例(一)的基础上数据发生了变化,文件中除了学生的成绩外,新增了学生姓名和出生年月的信息,因此将要成变成:分别根据姓名输出每个学生的无重复的前三个最好成绩和出生年月 数据准备:分别建立四个文本文件 james2.txt     James Lee,2002-3-14,2-34,3:21,2.34,2.45,3.01,2:01,2:01,3:10,2-22 julie2.txt        Julie Jones,2002-8-17,2.59,2.11

  • 对python .txt文件读取及数据处理方法总结

    1.处理包含数据的文件 最近利用Python读取txt文件时遇到了一个小问题,就是在计算两个np.narray()类型的数组时,出现了以下错误: TypeError: ufunc 'subtract' did not contain a loop with signature matching types dtype('<U3') dtype('<U3') dtype('<U3') 作为一个Python新手,遇到这个问题后花费了挺多时间,在网上找了许多大神们写的例子,最后终于解决了. 总

  • Python数据处理numpy.median的实例讲解

    numpy模块下的median作用为: 计算沿指定轴的中位数 返回数组元素的中位数 其函数接口为: median(a, axis=None, out=None, overwrite_input=False, keepdims=False) 其中各参数为: a:输入的数组: axis:计算哪个轴上的中位数,比如输入是二维数组,那么axis=0对应行,axis=1对应列: out:用于放置求取中位数后的数组. 它必须具有与预期输出相同的形状和缓冲区长度: overwrite_input:一个bool

  • 基于python爬虫数据处理(详解)

    一.首先理解下面几个函数 设置变量 length()函数 char_length() replace() 函数 max() 函数 1.1.设置变量 set @变量名=值 set @address='中国-山东省-聊城市-莘县'; select @address 1.2 .length()函数 char_length()函数区别 select length('a') ,char_length('a') ,length('中') ,char_length('中') 1.3. replace() 函数

  • Python 数据处理库 pandas 入门教程基本操作

    pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有表现力的数据结构,目的是使"关系"或"标记"数据的工作既简单又直观.它旨在成为在Python中进行实际数据分析的高级构建块. 入门介绍 pandas适合于许多不同类型的数据,包括: 具有异构类型列的表格数据,例如SQL表格或Excel数据 有序和无序(不一定是固定频率)时间序列数据.

  • python数据处理实战(必看篇)

    一.运行环境 1.python版本 2.7.13 博客代码均是这个版本 2.系统环境:win7 64位系统 二.需求 对杂乱文本数据进行处理 部分数据截图如下,第一个字段是原字段,后面3个是清洗出的字段,从数据库中聚合字段观察,乍一看数据比较规律,类似(币种 金额 万元)这样,我想着用sql写条件判断,统一转换为'万元人民币' 单位,用sql脚本进行字符串截取即可完成,但是后面发现数据并不规则,条件判断太多清洗质量也不一定,有的前面不是左括号,有的字段里面没有币种,有的数字并不是整数,有的没有万

  • 浅析Python数据处理

    Numpy.Pandas是Python数据处理中经常用到的两个框架,都是采用C语言编写,所以运算速度快.Matplotlib是Python的的画图工具,可以把之前处理后的数据通过图像绘制出来.之前只是看过语法,没有系统学习总结过,本博文总结了这三个框架的API. 以下是这三个框架的的简单介绍和区别: Numpy:经常用于数据生成和一些运算 Pandas:基于Numpy构建的,是Numpy的升级版本 Matplotlib:Python中强大的绘图工具 Numpy Numpy快速入门教程可参考:Nu

  • 浅析Python中的for 循环

    Python for 和其他语言一样,也可以用来循环遍历对象,本文章向大家介绍Python for 循环的使用方法和实例,需要的朋友可与参考一下. 一个循环是一个结构,导致第一个程序要重复一定次数.重复不断循环的条件仍是如此.当条件变为假,循环结束和程序的控制传递给后面的语句循环. for循环: 在Python for循环遍历序列的任何物品,如一个列表或一个字符串,有能力. for循环语法是: for iterating_var in sequence: statements(s) 如果一个序列

  • 浅析Python 中整型对象存储的位置

    在 Python 整型对象所存储的位置是不同的, 有一些是一直存储在某个存储里面, 而其它的, 则在使用时开辟出空间. 说这句话的理由, 可以看看如下代码: a = 5 b = 5 a is b # True a = 500 b = 500 a is b # False 由上面的代码可知, 整型 5 是一直存在的, 而整型 500 不是一直存在的. 那么有哪些整数是一直存储的呢? a, b, c = 0, 0, 0 while a is b: i += 1 a, b = int(str(i)),

  • 浅析python中的分片与截断序列

    序列概念 在分片规则里list.tuple.str(字符串)都可以称为序列,都可以按规则进行切片操作 切片操作 注意切片的下标0代表顺序的第一个元素,-1代表倒序的第一个元素:且切片不包括右边界,例如[0:3]代表元素0.1.2不包括3. l=['a','b','c','d',5] 1.获取列表的前3个元素 >>> l[0:3] ['a', 'b', 'c'] >>> l[:3] ['a', 'b', 'c'] 2.获取列表的后3个元素 >>> l[-

  • 深入浅析python中的多进程、多线程、协程

    进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配.任务的调度. 程序是运行在系统上的具有某种功能的软件,比如说浏览器,音乐播放器等. 每次执行程序的时候,都会完成一定的功能,比如说浏览器帮我们打开网页,为了保证其独立性,就需要一个专门的管理和控制执行程序的数据结构--进程控制块. 进程就是一个程序在一个数据集上的一次动态执行过程. 进程一般由程序.数据集.进程控

  • 浅析python协程相关概念

    这篇文章是读者朋友的python协程的学习经验之谈,以下是全部内容: 协程的历史说来话长,要从生成器开始讲起. 如果你看过我之前的文章python奇遇记:迭代器和生成器 ,对生成器的概念应该很了解.生成器节省内存,用的时候才生成结果. # 生成器表达式 a = (x*x for x in range(10)) # next生成值 next(a()) # 输出0 next(a()) # 输出1 next(a()) # 输出4 与生成器产出数据不同的是,协程在产出数据的同时还可以接收数据,具体来说就

随机推荐