python数字图像处理之骨架提取与分水岭算法

骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内。

1、骨架提取

骨架提取,也叫二值图像细化。这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示。

morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数。我们先来看Skeletonize()函数。

格式为:skimage.morphology.skeletonize(image)

输入和输出都是一幅二值图像。

例1:

from skimage import morphology,draw
import numpy as np
import matplotlib.pyplot as plt

#创建一个二值图像用于测试
image = np.zeros((400, 400))

#生成目标对象1(白色U型)
image[10:-10, 10:100] = 1
image[-100:-10, 10:-10] = 1
image[10:-10, -100:-10] = 1

#生成目标对象2(X型)
rs, cs = draw.line(250, 150, 10, 280)
for i in range(10):
 image[rs + i, cs] = 1
rs, cs = draw.line(10, 150, 250, 280)
for i in range(20):
 image[rs + i, cs] = 1

#生成目标对象3(O型)
ir, ic = np.indices(image.shape)
circle1 = (ic - 135)**2 + (ir - 150)**2 < 30**2
circle2 = (ic - 135)**2 + (ir - 150)**2 < 20**2
image[circle1] = 1
image[circle2] = 0

#实施骨架算法
skeleton =morphology.skeletonize(image)

#显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('original', fontsize=20)

ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('skeleton', fontsize=20)

fig.tight_layout()
plt.show()

生成一幅测试图像,上面有三个目标对象,分别进行骨架提取,结果如下:

例2:利用系统自带的马图片进行骨架提取

from skimage import morphology,data,color
import matplotlib.pyplot as plt

image=color.rgb2gray(data.horse())
image=1-image #反相
#实施骨架算法
skeleton =morphology.skeletonize(image)

#显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('original', fontsize=20)

ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('skeleton', fontsize=20)

fig.tight_layout()
plt.show()

medial_axis就是中轴的意思,利用中轴变换方法计算前景(1值)目标对象的宽度,格式为:

skimage.morphology.medial_axis(image,mask=None,return_distance=False)

mask: 掩模。默认为None, 如果给定一个掩模,则在掩模内的像素值才执行骨架算法。

return_distance: bool型值,默认为False. 如果为True, 则除了返回骨架,还将距离变换值也同时返回。这里的距离指的是中轴线上的所有点与背景点的距离。

import numpy as np
import scipy.ndimage as ndi
from skimage import morphology
import matplotlib.pyplot as plt

#编写一个函数,生成测试图像
def microstructure(l=256):
 n = 5
 x, y = np.ogrid[0:l, 0:l]
 mask = np.zeros((l, l))
 generator = np.random.RandomState(1)
 points = l * generator.rand(2, n**2)
 mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n))
 return mask > mask.mean()

data = microstructure(l=64) #生成测试图像

#计算中轴和距离变换值
skel, distance =morphology.medial_axis(data, return_distance=True)

#中轴上的点到背景像素点的距离
dist_on_skel = distance * skel

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.imshow(data, cmap=plt.cm.gray, interpolation='nearest')
#用光谱色显示中轴
ax2.imshow(dist_on_skel, cmap=plt.cm.spectral, interpolation='nearest')
ax2.contour(data, [0.5], colors='w') #显示轮廓线

fig.tight_layout()
plt.show()

2、分水岭算法

分水岭在地理学上就是指一个山脊,水通常会沿着山脊的两边流向不同的“汇水盆”。分水岭算法是一种用于图像分割的经典算法,是基于拓扑理论的数学形态学的分割方法。如果图像中的目标物体是连在一起的,则分割起来会更困难,分水岭算法经常用于处理这类问题,通常会取得比较好的效果。

分水岭算法可以和距离变换结合,寻找“汇水盆地”和“分水岭界限”,从而对图像进行分割。二值图像的距离变换就是每一个像素点到最近非零值像素点的距离,我们可以使用scipy包来计算距离变换。

在下面的例子中,需要将两个重叠的圆分开。我们先计算圆上的这些白色像素点到黑色背景像素点的距离变换,选出距离变换中的最大值作为初始标记点(如果是反色的话,则是取最小值),从这些标记点开始的两个汇水盆越集越大,最后相交于分山岭。从分山岭处断开,我们就得到了两个分离的圆。

例1:基于距离变换的分山岭图像分割

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,feature

#创建两个带有重叠圆的图像
x, y = np.indices((80, 80))
x1, y1, x2, y2 = 28, 28, 44, 52
r1, r2 = 16, 20
mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2
mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2
image = np.logical_or(mask_circle1, mask_circle2)

#现在我们用分水岭算法分离两个圆
distance = ndi.distance_transform_edt(image) #距离变换
local_maxi =feature.peak_local_max(distance, indices=False, footprint=np.ones((3, 3)),
       labels=image) #寻找峰值
markers = ndi.label(local_maxi)[0] #初始标记点
labels =morphology.watershed(-distance, markers, mask=image) #基于距离变换的分水岭算法

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes

ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax0.set_title("Original")
ax1.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest')
ax1.set_title("Distance")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
ax3.set_title("Segmented")

for ax in axes:
 ax.axis('off')

fig.tight_layout()
plt.show()

分水岭算法也可以和梯度相结合,来实现图像分割。一般梯度图像在边缘处有较高的像素值,而在其它地方则有较低的像素值,理想情况 下,分山岭恰好在边缘。因此,我们可以根据梯度来寻找分山岭。

例2:基于梯度的分水岭图像分割

import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,color,data,filter

image =color.rgb2gray(data.camera())
denoised = filter.rank.median(image, morphology.disk(2)) #过滤噪声

#将梯度值低于10的作为开始标记点
markers = filter.rank.gradient(denoised, morphology.disk(5)) <10
markers = ndi.label(markers)[0]

gradient = filter.rank.gradient(denoised, morphology.disk(2)) #计算梯度
labels =morphology.watershed(gradient, markers, mask=image) #基于梯度的分水岭算法

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6, 6))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes

ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax0.set_title("Original")
ax1.imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest')
ax1.set_title("Gradient")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
ax3.set_title("Segmented")

for ax in axes:
 ax.axis('off')

fig.tight_layout()
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • python opencv之分水岭算法示例
  • Python基于分水岭算法解决走迷宫游戏示例
(0)

相关推荐

  • python opencv之分水岭算法示例

    本文介绍了python opencv之分水岭算法示例,分享给大家,具体如下: 目标 使用分水岭算法对基于标记的图像进行分割 使用函数cv2.watershed() 原理: 灰度图像可以被看成拓扑平面,灰度值高的区域可以看出山峰,灰度值低的区域可以看成是山谷.向每一个山谷当中灌不同颜色的水.水位升高,不同山谷的水会汇合,为防止不同山谷的水汇合,小在汇合处建立起堤坝.然后继续灌水,然后再建立堤坝,直到山峰都掩模.构建好的堤坝就是图像的分割. 此方法通常会得到过渡分割的结果,因为图像中的噪声以及其他因

  • Python基于分水岭算法解决走迷宫游戏示例

    本文实例讲述了Python基于分水岭算法解决走迷宫游戏.分享给大家供大家参考,具体如下: #Solving maze with morphological transformation """ usage:Solving maze with morphological transformation needed module:cv2/numpy/sys ref: 1.http://www.mazegenerator.net/ 2.http://blog.leanote.com

  • python数字图像处理之骨架提取与分水岭算法

    骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数.我们先来看Skeletonize()函数. 格式为:skimage.morphology.skeletonize(image) 输入和输出都是一幅二值图像. 例1: from s

  • python数字图像处理环境安装与配置过程示例

    目录 引言 一.需要的安装包 二.下载并安装 anaconda 三.简单测试 四.skimage包的子模块 引言 一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因此,我们这里使用python这个脚本语言来进行数字图像处理. 要使用python,必须先安装python,一般是2.7版本以上,不管是在windows系统,还是linux系统,安装都是非

  • Python数字图像处理之霍夫线变换实现详解

    在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线.圆.椭圆等. 在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换. 对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距.但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta).即可用(r,theta)来表示一条直线.其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角.如

  • python数字图像处理之图像自动阈值分割示例

    目录 引言 1.threshold_otsu 2.threshold_yen 3.threshold_li 4.threshold_isodata 5.threshold_adaptive 引言 图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生相应的二值图像. 在skimage库中,阈值分割的功能是放在fi

  • python数字图像处理之图像简单滤波实现

    目录 引言 1.sobel算子 2.roberts算子 3.scharr算子 4.prewitt算子 5.canny算子 6.gabor滤波 7.gaussian滤波 8.median 9.水平.垂直边缘检测 10.交叉边缘检测 引言 对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声:另一种是微分算子,可以用来检测边缘和特征提取. skimage库中通过filters模块进行滤波操作. 1.sobel算子 sobel算子可用来检测边缘 函数格式为:skimage.filters.so

  • python数字图像处理之基本形态学滤波

    目录 引言 1.膨胀(dilation) 2.腐蚀(erosion) 3.开运算(opening) 4.闭运算(closing) 5.白帽(white-tophat) 6.黑帽(black-tophat) 引言 对图像进行形态学变换.变换对象一般为灰度图或二值图,功能函数放在morphology子模块内. 1.膨胀(dilation) 原理:一般对二值图像进行操作.找到像素值为1的点,将它的邻近像素点都设置成这个值.1值表示白,0值表示黑,因此膨胀操作可以扩大白色值范围,压缩黑色值范围.一般用来

  • python数字图像处理之高级滤波代码详解

    本文提供许多的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在photoshop里面翻译成自动色阶,用局部直方图来对图片进行滤波分级. 该滤波器局部地拉伸灰度像素值的直方图,以覆盖整个像素值范围. 格式:skimage.filters.rank.autolevel(image, selem) selem表示结构化元素,用于设定滤波器. from skimage im

  • python数字图像处理之估计噪声参数

    估计噪声参数 周期噪声的参数通常是通过检测图像的傅里叶谱来估计的. 只能使用由传感器生成的图像时,可由一小片恒定的背景灰度来估计PDF的参数. 来自图像条带的数据的最简单用途是,计算灰度级的均值和方差.考虑由 S S S表示的一个条带(子图像),并令 P S ( z i ) P_{S}(z_i) PS​(zi​), i = 0 , 1 , 2 , - , L − 1 i = 0, 1, 2, \dots, L-1 i=0,1,2,-,L−1表示 S S S中的像素灰度的概率估计(归一化直方图值)

  • Python数字图像处理基础直方图详解

    目录 直方图的定义 直方图的性质 直方图的应用 图像增强 图像分割 图像识别 Python直方图的计算 直方图的定义 直方图的性质 只统计某个灰度级出现的次数,图像的大小不一样的话, 某灰度值的像素出现的次数是不一样的. 那如果我们在这基础上除以像素总个数的话,那就是某一灰度级出现的概率,那么这样的话不同大小的同一内容图像其灰度直方图是一样的. 直方图的应用 图像增强 图像分割 图像识别 Python直方图的计算 import cv2 import numpy as np import matp

  • Python数字图像处理代数之加减乘运算

    目录 代数运算 定义 加法运算 减法运算 乘法运算 代数运算 定义 加法运算 图像叠加需要满足该条件:两幅图像的像素必须相同(尺寸,形状) 减法运算 乘法运算 1.图像的局部显示. 2.用二值蒙版图像与原图像做乘法. 以上就是Python数字图像处理代数之加减乘运算的详细内容,更多关于Python数字图像处理代数运算的资料请关注我们其它相关文章!

随机推荐