Python绘制频率分布直方图的示例

项目中在前期经常要看下数据的分布情况,这对于探究数据规律非常有用。概率分布表示样本数据的模样,长的好不好看如果有图像展示出来就非常完美了,使用Python绘制频率分布直方图非常简洁,因为用的频次非常高,这里记录下来。还是Python大法好,代码简洁不拖沓~

如果数据取值的范围跨度不大,可以使用等宽区间来展示直方图,这也是最常见的一种;如果数据取值范围比较野,也可以自定义区间端点,绘制图像,下面分两种情况展示

1. 区间长度相同绘制直方图

#-*- encoding=utf-8 -*-
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')

# 按照固定区间长度绘制频率分布直方图
# bins_interval 区间的长度
# margin    设定的左边和右边空留的大小
def probability_distribution(data, bins_interval=1, margin=1):
  bins = range(min(data), max(data) + bins_interval - 1, bins_interval)
  print(len(bins))
  for i in range(0, len(bins)):
    print(bins[i])
  plt.xlim(min(data) - margin, max(data) + margin)
  plt.title("probability-distribution")
  plt.xlabel('Interval')
  plt.ylabel('Probability')
  plt.hist(x=data, bins=bins, histtype='bar', color=['r'])
  plt.show()

2. 区间长度不同绘制直方图

#-*- encoding=utf-8 -*-
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc'

# 自己给定区间,小于区间左端点和大于区间右端点的统一做处理,对于数据分布不均很的情况处理较友好
# bins   自己设定的区间数值列表
# margin  设定的左边和右边空留的大小
# label   右上方显示的图例文字
"""e
  import numpy as np
  data = np.random.normal(0, 1, 1000)
  bins = np.arange(-5, 5, 0.1)
  probability_distribution_extend(data=data, bins=bins)
"""
def probability_distribution_extend(data, bins, margin=1, label='Distribution'):
  bins = sorted(bins)
  length = len(bins)
  intervals = np.zeros(length+1)
  for value in data:
    i = 0
    while i < length and value >= bins[i]:
      i += 1
    intervals[i] += 1
  intervals = intervals / float(len(data))
  plt.xlim(min(bins) - margin, max(bins) + margin)
  bins.insert(0, -999)
  plt.title("probability-distribution")
  plt.xlabel('Interval')
  plt.ylabel('Probability')
  plt.bar(bins, intervals, color=['r'], label=label)
  plt.legend()
  plt.show()

Case示例

if __name__ == '__main__':
  data = [1,4,6,7,8,9,11,11,12,12,13,13,16,17,18,22,25]
  probability_distribution(data=data, bins_interval=5,margin=0)

效果如下图

以上这篇Python绘制频率分布直方图的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 教你利用Python玩转histogram直方图的五种方法

    直方图 直方图是一个可以快速展示数据概率分布的工具,直观易于理解,并深受数据爱好者的喜爱.大家平时可能见到最多就是 matplotlib,seaborn 等高级封装的库包,类似以下这样的绘图. 本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结): 纯Python实现直方图,不使用任何第三方库 使用Numpy来创建直方图总结数据 使用matplotlib,pandas,seaborn绘制直方图 下面,我们来逐一介绍每种方法的来龙去脉. 纯Py

  • python OpenCV学习笔记之绘制直方图的方法

    本篇文章主要介绍了python OpenCV学习笔记之绘制直方图的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考.一起跟随小编过来看看吧 官方文档 – https://docs.opencv.org/3.4.0/d1/db7/tutorial_py_histogram_begins.html 直方图会让你对图像的强度分布有一个全面的认识.它是一个在x轴上带有像素值(从0到255,但不总是),在y轴上的图像中对应的像素数量的图. 这只是理解图像的另一种方式.通过观察图像的直方图,你可以直

  • Python基于matplotlib绘制栈式直方图的方法示例

    本文实例讲述了Python基于matplotlib绘制栈式直方图的方法.分享给大家供大家参考,具体如下: 平时我们只对一组数据做直方图统计,这样我们只要直接画直方图就可以了. 但有时候我们同时画多组数据的直方图(比如说我大一到大四跑大学城内环的用时的分布),大一到大四用不同颜色的直方图,显示在一张图上,这样会很直观. #!/usr/bin/env python # -*- coding: utf-8 -*- #http://www.jb51.net/article/100363.htm # nu

  • Python绘制频率分布直方图的示例

    项目中在前期经常要看下数据的分布情况,这对于探究数据规律非常有用.概率分布表示样本数据的模样,长的好不好看如果有图像展示出来就非常完美了,使用Python绘制频率分布直方图非常简洁,因为用的频次非常高,这里记录下来.还是Python大法好,代码简洁不拖沓~ 如果数据取值的范围跨度不大,可以使用等宽区间来展示直方图,这也是最常见的一种:如果数据取值范围比较野,也可以自定义区间端点,绘制图像,下面分两种情况展示 1. 区间长度相同绘制直方图 #-*- encoding=utf-8 -*- impor

  • python绘制随机网络图形示例

    如下所示: #Copyright (c)2017, 东北大学软件学院学生 # All rightsreserved #文件名称:a.py # 作 者:孔云 #问题描述: #问题分析:.代码如下: import networkx as ne #导入建网络模型包,命名ne import matplotlib.pyplot as mp #导入科学绘图包,命名mp #erdos renyi graphy rg=ne.erdos_renyi_graph(20,0.8) ps=ne.shell_layout

  • python绘制无向图度分布曲线示例

    如下所示: #Copyright (c)2017, 东北大学软件学院学生 # All rightsreserved #文件名称:a.py # 作 者:孔云 #问题描述:统计图中的每个节点的度,并生成度序列 #问题分析:利用networkx.代码如下: import matplotlib.pyplot as plt #导入科学绘图包 import networkx as nx G=nx.random_graphs.barabasi_albert_graph(1000,3)#生成n=1000,m=3

  • 使用python绘制二维图形示例

    我就废话不多说了,直接上代码吧! import matplotlib.pyplot as plt #也可以使用 import pylab as pl import matplotlib.font_manager as fm myfont = fm.FontProperties(fname=r'C:\Windows\Fonts\simkai.ttf') #或许字体,为设置中文显示 x = [1,2,3,4,5,6] data1 = [1,1.3,1.39,1.41,1.42,1.40] data2

  • Python绘制组合图的示例

    绘制组合图: 组合图就是将多个形状,组合到⼀个图形中,主要作⽤是节约作图的空间,节省读者的时间,从⽽提⾼ 信息传达的效率. import pandas as pd import numpy as np import matplotlib.pyplot as plt def plot_combination1(): sale = pd.read_excel('./data/每月目标销售额和实际销售额.xlsx',header=0,index_col=0) # 设置正常显示中文标签 plt.rcPa

  • python绘制趋势图的示例

    import matplotlib.pyplot as plt #plt用于显示图片 import matplotlib.image as mping #mping用于读取图片 import datetime as dt import matplotlib.dates as mdates from pylab import * def draw_trend_chart(dates,y): mpl.rcParams['font.sans-serif'] = ['SimHei'] #指定默认字体 m

  • python 绘制场景热力图的示例

    我们在做诸如人群密集度等可视化的时候,可能会考虑使用热力图,在Python中能很方便地绘制热力图. 下面以识别图片中的行人,并绘制热力图为例进行讲解. 步骤1:首先识别图像中的人,得到bounding box的中心坐标.识别方法多样化,坐标也可以自己定义. 步骤2:将所有中心坐标放入一个list类型的变量data中,即data = [[x1,y1] [x2,y2] -] 步骤3:绘制热力图,并将热力图加权叠加到原图上. 需要import的包: import cv2 import numpy as

  • Python绘制3D立体花朵示例详解

    目录 动态展示 导读 源码和详解 荷花 玫瑰花 桃花 月季 动态展示 这是一个动态图哦 导读 兄弟们可以收藏一下哦!情人节可以送出去,肥学找了几朵python写的花给封装好送给大家.不是多炫酷但是有足够的用心哦.别忘了点赞呀我也就不细说了,来吧展示! 源码和详解 荷花 def lotus(): fig = plt.figure(figsize=(10,7),facecolor='black',clear=True) ax = fig.gca(projection='3d') [x, t] = n

  • python绘制简单直方图的方法

    直方图,又称质量分布图,是一种统计报告图,由一系列高度不等的纵条或线段表示数据分布情况.用横轴表示数据类型,纵轴表示分布情况.直方图是数值数据分布的精确图形表示.绘制连续性的数据,展示一组或多组数据的分布状况. 直方图的绘制和条形图有些相似,需要把plt.bar()修改成plt.hist(),更改图形的拟合方式,即可绘制直方图.例如你获取到了250部电影的数量,他们的时长都在80-140分钟,如何呈现电影的时长分布情况呢? 老规矩,上代码: '''     组数=极差/组距 ''' from m

  • Python绘制的二项分布概率图示例

    本文实例讲述了Python绘制的二项分布概率图.分享给大家供大家参考,具体如下: 问题: 抛硬币,20次,每一次朝上的概率是0.3.要求绘制连续几次正面朝上的概率图 Python代码: #-*- coding:utf-8 -*- import numpy as np import matplotlib.pyplot as plt import math from scipy import stats n = 20 p = 0.3 k = np.arange(0,41) print k print

随机推荐