Hadoop 分布式存储系统 HDFS的实例详解

HDFS是Hadoop Distribute File System 的简称,也就是Hadoop的一个分布式文件系统。

一、HDFS的优缺点

1.HDFS优点:

  a.高容错性

    .数据保存多个副本

    .数据丢的失后自动恢复

  b.适合批处理

    .移动计算而非移动数据

    .数据位置暴露给计算框架

  c.适合大数据处理

    .GB、TB、甚至PB级的数据处理

    .百万规模以上的文件数据

    .10000+的节点

  d.可构建在廉价的机器上

    .通过多副本存储,提高可靠性

    .提供了容错和恢复机制

2.HDFS缺点

  a.低延迟数据访问处理较弱

    .毫秒级别的访问响应较慢

    .低延迟和高吞吐率的请求处理较弱

  b.大量小文件存取处理较弱

    .会占用大量NameNode的内存

    .寻道时间超过读取时间

  c.并发写入、文件随机修改

    .一个文件仅有一个写者

    .仅支持Append写入

二、HDFS的架构

  如上图所示,HDFS也是按照Master和Slave的结构。分NameNode、SecondaryNameNode、DataNode这几个角色。

  NameNode:是Master节点,是大领导。管理数据块映射;处理客户端的读写请求;配置副本策略;管理HDFS的名称空间;

  SecondaryNameNode:是一个小弟,分担大哥namenode的一部分工作量;是NameNode的冷备份;合并fsimage和fsedits然后再发给namenode。

  DataNode:Slave节点,奴隶,干活的。负责存储client发来的数据块block;执行数据块的读写操作。

  热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。

  冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。

  fsimage:元数据镜像文件(文件系统的目录树。)

  edits:元数据的操作日志(针对文件系统做的修改操作记录)

  namenode内存中存储的是=fsimage+edits。

  SecondaryNameNode负责定时默认1小时,从namenode上,获取fsimage和edits来进行合并,然后再发送给namenode。减少namenode的工作量。

三、HDFS数据存储单元(block)

1.文件被切割成固大小的数据块

  a.默认数据块大小是64MB,数据块大小可配置

  b.若数据块大小不到64MB,则单独成一个数据块

2.一个文件存储方式

  a.按大小切割成若干个block,存储在不同的节点上

  b.每个block默认存三个副本

  block大小和副本数由Client上传文件的时候设置,文件上传成功以后,副本数可以变更,但是Block 大小不可变。

四、HDFS设计思想

  一个50G的文件上传到HDFS上,首先该文件被切割成了若干个64MB的block,block1在node1,node2,node3上存储了3(默认3个,可以设置)个副本,block2在node2,node3,node4上存储了3个副 本block3....直到所有的block都存储3个副本;

五、NameNode(NN)、 SencondryNameNode (SNN)、DataNode(DN)

1.NameNode (NN) 的工作

  a.接受客户端的读写服务

  b.保存metadata的信息,包括:文件的owership和permissions、文件包含哪些block、block保存在哪些DataNode节点上(在启动时由DataNode上报)

  c.NameNode 的metadata信息会在启动后加载到内存中

    .metadata信息在磁盘上存储的文件为“fsimage”

    .Block的位置信息不保存在fsimage中(由DataNode上报)

    .edits中保存对metadata的操作日志

2.SecondryNameNode(SNN) 的工作

  a.它不是NN的备份(但可以做NN的部分备份的工作),它的主要工作是帮助NN合并edits log 减少NN的启动时间

  b.SNN合并时机

    .根据配置文件设置的时间间隔fs.checkpoint.period 默认3600秒

    .根据配置文件设置的edits log的大小 fs.checpoint.size 默认的edits log 大小为64MB

  c.SNN合并流程

    1>NN 创建一个新的edits log 来接替老的 edits 的工作

    2>NN 将fsimage 和 旧的edits 拷备到 SNN上

    3>SNN上进行合并操作,产生一个新的fsimage

    4>将新的fsimage 复制一份到NN上

    5>使用新的fsimage 和 新的edits log

3.DataNode (DN)

  a.存储数块(block)

  b.启动DN线程时,DN会自动向NN汇报Block的信息

  c.NN向DN发送心跳检测,与其DN保持联系(3秒一次) 如果NN 连续10分钟没有收到DN的心跳,则认为该DN已经lost,并从其他DN中备份一份该DN上的所有block

  d.block的放置策略

    .第一个副本,放置在上传文件的DN上,如果是集群外提交,则随便选择一台磁盘、内存、CPU不太忙的节点存储

    .第二个副本,放置在与第一个副本不同机架上的节点上

    .第三个副本,放置在与第二个副本相同机架上的相邻的节点上

    .更多副本随机放置

六、HDFS的写流程和读流程

1.HDFS写流程

    例:

  有一个文件FileA,100M大小。Client将FileA写入到HDFS上。

  HDFS按默认配置。

  HDFS分布在三个机架上Rack1,Rack2,Rack3。

  a.Client将FileA按64M分块。分成两块,block1和Block2;

  b.Client向nameNode发送写数据请求,如图蓝色虚线①------>。

  c.NameNode节点,记录block信息。并返回可用的DataNode,如粉色虚线②--------->。

  Block1: host2,host1,host3

  Block2: host7,host8,host4

原理:

NameNode具有RackAware机架感知功能,这个可以配置。

若client为DataNode节点,那存储block时,规则为:副本1,同client的节点上;副本2,不同机架节点上;副本3,同第二个副本机架的另一个节点上;其他副本随机挑选。

若client不为DataNode节点,那存储block时,规则为:副本1,随机选择一个节点上;副本2,不同副本1,机架上;副本3,同副本2相同的另一个节点上;其他副本随机挑选。

  d.client向DataNode发送block1;发送过程是以流式写入。

    1>将64M的block1按64k的package划分;

    2>然后将第一个package发送给host2;

    3>host2接收完后,将第一个package发送给host1,同时client想host2发送第二个package;

    4>host1接收完第一个package后,发送给host3,同时接收host2发来的第二个package。

    5>以此类推,如图红线实线所示,直到将block1发送完毕。

    6>host2,host1,host3向NameNode,host2向Client发送通知,说“消息发送完了”。如图粉红颜色实线所示。

    7>client收到host2发来的消息后,向namenode发送消息,说我写完了。这样就真完成了。如图黄色粗实线

    8>发送完block1后,再向host7,host8,host4发送block2,如图蓝色实线所示。

    9>发送完block2后,host7,host8,host4向NameNode,host7向Client发送通知,如图浅绿色实线所示。

    10>client向NameNode发送消息,说我写完了,如图黄色粗实线。。。这样就完毕了。

  分析,通过写过程,我们可以了解到:

    ①写1T文件,我们需要3T的存储,3T的网络流量贷款。

    ②在执行读或写的过程中,NameNode和DataNode通过HeartBeat进行保存通信,确定DataNode活着。如果发现DataNode死掉了,就将死掉的DataNode上的数据,放到其他节点去。读取时,要读其他节点去。

    ③挂掉一个节点,没关系,还有其他节点可以备份;甚至,挂掉某一个机架,也没关系;其他机架上,也有备份。

2.读流程

    例:

   读操作就简单一些了,如图所示,client要从datanode上,读取FileA。而FileA由block1和block2组成。

   那么,读操作流程为:

    a.client向namenode发送读请求。

    b.namenode查看Metadata信息,返回fileA的block的位置。

     block1:host2,host1,host3

    block2:host7,host8,host4

    c.block的位置是有先后顺序的,先读block1,再读block2。而且block1去host2上读取;然后block2,去host7上读取;

七、HDFS文件权限

  1.与linux系统文件权限类似

    r:read w:write x:execute 权限x对于文件忽略,对于文件夹表示是否允许访问

  2.如果linux系统用户zhangsan使用hadoop命令创建一个文件 ,那么该文件在HDFS中的所有者就是zhangsan。

  3.HDFS权限的目:阻止好人做错事,而不是阻止坏人做坏事;例:只要是zhangsan上传的文件,那HDFS就认为这个文件属于张三,当下次过来操作的还是zhangsan那就可以操作,而不需要密码验证之类的操作。

八、安全模式

在NameNode启动以后会一段时间是处于安全模式,在安全模式下只可查看不能修进行其他操作,因为在安全模式下NN和DN需要做很多工作;

  1.NN 启动的时候首先需要将fsimage 载入内存,并执行编辑日志中的各项操作。

  2.一旦在文件系统中建立了一个新的元数据的映射,则创建一个新的fsimage 文件(与SNN配合)和一个空的edits文件

  3.安全模式下的NameNode,对客户端是只读的(显示文件目录、内容等 ,其他的删除、修改、重命名操作都会失败)

  4.在安全模式下,NameNode会收集来自DataNode汇报的block的信息,如果DN汇报的block的最副本数大于设置的最小副本数,则会认为是“安全”的。

   如果有block的副本数没有达到设置的最小副本数,则该block会被复制直到达到设置的最小副本数为止。

总结

以上所述是小编给大家介绍的Hadoop 分布式存储系统 HDFS的实例详解,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

(0)

相关推荐

  • hadoop的hdfs文件操作实现上传文件到hdfs

    hdfs文件操作操作示例,包括上传文件到HDFS上.从HDFS上下载文件和删除HDFS上的文件,大家参考使用吧 复制代码 代码如下: import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.*; import java.io.File;import java.io.IOException;public class HadoopFile {    private Configuration conf =null

  • Hadoop文件的存储格式实例详解

    sequence文件存储格式 1.txt 纯文本格式,若干行记录.默认用字符编码存储 2.SequenceFile格式(顺序文件格式,可进行切割) key-value 格式进行存储,最终形成的是一个二进制文件, 需用hadoop提供的api进行写入存储. 编写 写入 seq文件案例. Configuration configuration = new Configuration(); configuration.set("fs.defaultFS","hdfs://s100:

  • Java访问Hadoop分布式文件系统HDFS的配置说明

    配置文件 m103替换为hdfs服务地址. 要利用Java客户端来存取HDFS上的文件,不得不说的是配置文件hadoop-0.20.2/conf/core-site.xml了,最初我就是在这里吃了大亏,所以我死活连不上HDFS,文件无法创建.读取. <?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <co

  • hadoop格式化HDFS出现错误解决办法

    hadoop格式化HDFS出现错误解决办法 报错信息: host:java.net.UnknownHostException: centos-wang: centos-wang: unknown error 在执行hadoop namenode -format命令时,出现未知的主机名. 问题原因: 出现这种问题的原因是Hadoop在格式化HDFS的时候,通过hostname命令获取到的主机名与/etc/hosts文件中进行映射的时候,没有找到. 解决方案: 1.修改/etc/hosts内容 2.

  • hadoop重新格式化HDFS步骤解析

    了解Hadoop的同学都知道,Hadoop有两个核心的组成部分,一个是HDFS,另一个则是MapReduce,HDFS作为Hadoop的数据存储方案,MapReduce则提供计算服务:同时,HDFS作为一种分布式文件系统,它的安装也是需要相应的格式化操作的,如果安装失败或者我们需要重新安装的时候,那我们就需要对HDFS重新进行格式化,这篇文章就和大家一起讨论下如何进行HDFS的重新格式化. 重新格式化hdfs系统的方法: 1.打开hdfs-site.xml 我们打开Hadoop的hdfs-sit

  • Hadoop 分布式存储系统 HDFS的实例详解

    HDFS是Hadoop Distribute File System 的简称,也就是Hadoop的一个分布式文件系统. 一.HDFS的优缺点 1.HDFS优点: a.高容错性 .数据保存多个副本 .数据丢的失后自动恢复 b.适合批处理 .移动计算而非移动数据 .数据位置暴露给计算框架 c.适合大数据处理 .GB.TB.甚至PB级的数据处理 .百万规模以上的文件数据 .10000+的节点 d.可构建在廉价的机器上 .通过多副本存储,提高可靠性 .提供了容错和恢复机制 2.HDFS缺点 a.低延迟数

  • Hadoop多Job并行处理的实例详解

    Hadoop多Job并行处理的实例详解 有关Hadoop多Job任务并行处理,经过测试,配置如下: 首先做如下配置: 1.修改mapred-site.xml添加调度器配置: <property> <name>mapred.jobtracker.taskScheduler</name> <value>org.apache.hadoop.mapred.FairScheduler</value> </property> 2.添加jar文件地

  • go 分布式锁简单实现实例详解

    目录 正文 案例 资源加锁 使用redis来实现分布式锁 redis lua保证原子性 正文 其实锁这种东西,都能能不加就不加,锁会导致程序一定程度上退回到串行化,进而降低效率. 案例 首先,看一个案例,如果要实现一个计数器,并且是多个协程共同进行的,就会出现以下的情况: package main import ( "fmt" "sync" ) func main() { numberFlag := 0 wg := new(sync.WaitGroup) for i

  • hadoop迁移数据应用实例详解

    项目开发中hadoop一直装在虚拟机上,最近要迁移到服务器上.记录下迁移过程. 一.为虚拟机添加一块新的硬盘 虚拟机的初始硬盘只有30G,容不开要导出的数据.两种方式,一是给虚拟机扩容:二是为虚拟机添加一块新的硬盘.这里采取第二种方式. 1.添加虚拟硬盘 至此,添加硬盘成功. 2.将硬盘分区 要使用一块新的硬盘,需要先将硬盘分区,然后挂在文件系统上才能使用. 这里普及一下linux的文件系统与硬盘以及分区的关系.按照一个"由硬到软"的顺序来讲,首先是硬盘,是物理的:我们要使用这个物理硬

  • php基于redis的分布式锁实例详解

    在使用分布式锁进行互斥资源访问时候,我们很多方案是采用redis的实现. 固然,redis的单节点锁在极端情况也是有问题的,假设你的业务允许偶尔的失效,使用单节点的redis锁方案就足够了,简单而且效率高. redis锁失效的情况: 客户端1从master节点获取了锁 master宕机了,存储锁的key还没来得及同步到slave节点上 slave升级为master 客户端2从新的master上获取到同一个资源的锁 于是,客户端1和客户端2同事持有了同一个资源的锁,锁的安全性被打破. 如果我们不考

  • java 中自定义OutputFormat的实例详解

    java 中 自定义OutputFormat的实例详解 实例代码: package com.ccse.hadoop.outputformat; import java.io.IOException; import java.net.URI; import java.net.URISyntaxException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apa

  • Hadoop-3.1.2完全分布式环境搭建过程图文详解(Windows 10)

    一.前言 Hadoop原理架构本人就不在此赘述了,可以自行百度,本文仅介绍Hadoop-3.1.2完全分布式环境搭建(本人使用三个虚拟机搭建). 首先,步骤: ① 准备安装包和工具: hadoop-3.1.2.tar.gz ◦ jdk-8u221-linux-x64.tar.gz(Linux环境下的JDK) ◦ CertOS-7-x86_64-DVD-1810.iso(CentOS镜像) ◦工具:WinSCP(用于上传文件到虚拟机),SecureCRTP ortable(用于操作虚拟机,可复制粘

  • Spark中的数据读取保存和累加器实例详解

    目录 数据读取与保存 Text文件 Sequence文件 Object对象文件 累加器 累加器概念 系统累加器 数据读取与保存 Text文件 对于 Text文件的读取和保存 ,其语法和实现是最简单的,因此我只是简单叙述一下这部分相关知识点,大家可以结合demo具体分析记忆. 1)基本语法 (1)数据读取:textFile(String) (2)数据保存:saveAsTextFile(String) 2)实现代码demo如下: object Operate_Text { def main(args

  • java操作mongoDB查询的实例详解

    java操作mongo查询的实例详解 前言: MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的.他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型.Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且

随机推荐