python使用mediapiple+opencv识别视频人脸的实现
目录
- 1、安装
- 2、代码实现
- 3、更新 mediapiple+threadpool+opencv实现图片人脸采集效率高于dlib
1、安装
pip install mediapipe
2、代码实现
# -*- coding: utf-8 -*- """ @Time : 2022/3/18 14:43 @Author : liwei @Description: """ import cv2 import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_face_mesh = mp.solutions.face_mesh mp_face_detection = mp.solutions.face_detection # 绘制人脸画像的点和线的大小粗细及颜色(默认为白色) drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1) cap = cv2.VideoCapture("E:\\video\\test\\test.mp4")# , cv2.CAP_DSHOW # For webcam input: # cap = cv2.VideoCapture(0) with mp_face_detection.FaceDetection( model_selection=0, min_detection_confidence=0.5) as face_detection: while cap.isOpened(): success, image = cap.read() if not success: print("Ignoring empty camera frame.") # If loading a video, use 'break' instead of 'continue'. break # To improve performance, optionally mark the image as not writeable to # pass by reference. image.flags.writeable = False image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) results = face_detection.process(image) # Draw the face detection annotations on the image. image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if results.detections: box = results.detections[0].location_data.relative_bounding_box xmin = box.xmin ymin = box.ymin width = box.width height = box.height xmax = box.xmin + width ymax = ymin + height cv2.rectangle(image, (int(xmin * image.shape[1]),int(ymin* image.shape[0])), (int(xmax* image.shape[1]), int(ymax* image.shape[0])), (0, 0, 255), 2) # for detection in results.detections: # mp_drawing.draw_detection(image, detection) # Flip the image horizontally for a selfie-view display. cv2.imshow('MediaPipe Face Detection', cv2.flip(image, 1)) if cv2.waitKey(5) & 0xFF == 27: break cap.release()
效果
3、更新 mediapiple+threadpool+opencv实现图片人脸采集效率高于dlib
# -*- coding: utf-8 -*- """ @Time : 2022/3/23 13:43 @Author : liwei @Description: """ import cv2 as cv import mediapipe as mp import os import threadpool mp_drawing = mp.solutions.drawing_utils mp_face_mesh = mp.solutions.face_mesh mp_face_detection = mp.solutions.face_detection savePath = "E:\\saveImg\\" basePath = "E:\\img\\clear\\20220301\\" def cut_face_img(file): # print(basePath + file) img = cv.imread(basePath + file) with mp_face_detection.FaceDetection( model_selection=0, min_detection_confidence=0.5) as face_detection: img.flags.writeable = False image = cv.cvtColor(img, cv.COLOR_RGB2BGR) results = face_detection.process(image) image = cv.cvtColor(image, cv.COLOR_RGB2BGR) image.flags.writeable = True if results.detections: box = results.detections[0].location_data.relative_bounding_box xmin = box.xmin ymin = box.ymin width = box.width height = box.height xmax = box.xmin + width ymax = ymin + height x1, x2, y1, y2 = int(xmax * image.shape[1]), int(xmin * image.shape[1]), int( ymax * image.shape[0]), int(ymin * image.shape[0]) cropped = image[y2:y1, x2:x1] if cropped.shape[1] > 200: cv.imwrite(savePath + file, cropped) print(savePath + file) if __name__ == '__main__': data = os.listdir(basePath) pool = threadpool.ThreadPool(3) requests = threadpool.makeRequests(cut_face_img, data) [pool.putRequest(req) for req in requests] pool.wait()
到此这篇关于python使用mediapiple+opencv识别视频人脸的实现的文章就介绍到这了,更多相关mediapiple opencv识别视频人脸内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
赞 (0)