Python中最强大的错误重试库(tenacity库)

目录
  • 1 简介
  • 2 tenacity中的常用功能
    • 2.1 tenacity的基础使用
    • 2.2 设置最大重试次数
    • 2.3 设置重试最大超时时长
    • 2.4 组合重试停止条件
    • 2.5 设置相邻重试之间的时间间隔
    • 2.6 自定义是否触发重试
    • 2.7 对函数的错误重试情况进行统计

1 简介

我们在编写程序尤其是与网络请求相关的程序,如调用web接口、运行网络爬虫等任务时,经常会遇到一些偶然发生的请求失败的状况,这种时候如果我们仅仅简单的捕捉错误然后跳过对应任务,肯定是不严谨的,尤其是在网络爬虫中,会存在损失有价值数据的风险。

这类情况下我们就很有必要为我们的程序逻辑添加一些「错误重试」的策略,费老师我在几年前写过文章介绍过Python中的retry库,但它功能较为单一,只能应对基本的需求。

而今天我要给大家介绍的tenacity库,可能是目前Python生态中最好用的错误重试库,下面就让我们一睹其主要功能吧~

2 tenacity中的常用功能

作为一个第三方Python库,我们可以使用pip install tenacity对其进行安装,安装完成后,下面我们来学习一下tenacity的主要使用方法和特性:

2.1 tenacity的基础使用

tenacity的错误重试核心功能由其retry装饰器来实现,默认不给retry装饰器传参数时,它会在其所装饰的函数运行过程抛出错误时不停地重试下去,譬如下面这个简单的例子:

import random
from tenacity import retry

@retry
def demo_func1():

    a = random.random()
    print(a)

    if a >= 0.1:
        raise Exception

demo_func1()

可以看到,我们的函数体内每次生成0到1之间的随机数,当这个随机数不超过0.1时才会停止抛出错误,否则则会被tenacity捕捉到每次的错误抛出行为并立即重试。

2.2 设置最大重试次数

有些时候我们对某段函数逻辑错误重试的忍耐是有限度的,譬如当我们调用某个网络接口时,如果连续n次都执行失败,我们可能就会认为这个任务本身就存在缺陷,不是通过重试就能有朝一日正常的。

这种时候我们可以利用tenacity中的stop_after_attempt函数,作为retry()中的stop参数传入,从而为我们“无尽”的错误重试过程添加一个终点,其中stop_after_attempt()接受一个整数输入作为「最大重试」的次数:

from tenacity import retry, stop_after_attempt

@retry(stop=stop_after_attempt(3))
def demo_func2():

    print('函数执行')

    raise Exception

demo_func2()

可以看到,我们的函数在限制了最大重试次数后,经过3次重试,在第4次继续执行依然抛出错误后,正式地抛出了函数中对应的Exception错误结束了重试过程。

2.3 设置重试最大超时时长

我们除了像上一小节中那样设置最大错误重试的次数之外,tenacity还为我们提供了stop_after_delay()函数来设置整个重试过程的最大耗时,超出这个时长也会结束重试过程:

import time
from tenacity import retry, stop_after_delay

# 设置重试最大超时时长为5秒
@retry(stop=stop_after_delay(5))
def demo_func3():

    time.sleep(1)
    print(f'已过去 {time.time() - start_time} 秒')

    raise Exception

# 记录开始时间
start_time = time.time()
demo_func3()

2.4 组合重试停止条件

如果我们的任务同时需要添加最大重试次数以及最大超时时长限制,在tenacity中仅需要用|运算符组合不同的限制条件再传入retry()的stop参数即可,譬如下面的例子,当我们的函数执行重试超过3秒或次数大于5次时均可以结束重试:

import time
import random
from tenacity import retry, stop_after_delay, stop_after_attempt

@retry(stop=(stop_after_delay(3) | stop_after_attempt(5)))
def demo_func4():

    time.sleep(random.random())
    print(f'已过去 {time.time() - start_time} 秒')

    raise Exception

# 记录开始时间
start_time = time.time()
demo_func4()

可以看到,在上面的演示中,先达到了“最大重试5次”的限制从而结束了重试过程。

2.5 设置相邻重试之间的时间间隔

有些情况下我们并不希望每一次重试抛出错误后,立即开始下一次的重试,譬如爬虫任务中为了更好地伪装我们的程序,tenacity中提供了一系列非常实用的函数,配合retry()的wait参数,帮助我们妥善处理相邻重试之间的时间间隔,其中较为实用的主要有以下两种方式:

2.5.1 设置固定时间间隔

我们通过使用tenacity中的wait_fixed()可以为相邻重试之间设置固定的等待间隔秒数,就像下面的简单示例那样:

import time
from tenacity import retry, wait_fixed, stop_after_attempt

# 设置重试等待间隔为1秒
@retry(wait=wait_fixed(1), stop=stop_after_attempt(3))
def demo_func5():

    print(f'已过去 {time.time() - start_time} 秒')

    raise Exception

# 记录开始时间
start_time = time.time()
demo_func5()

2.5.2 设置随机时间间隔

除了设置固定的时间间隔外,tenacity还可以通过wait_random()帮助我们为相邻重试设置均匀分布随机数,只需要设置好均匀分布的范围即可:

import time
from tenacity import retry, wait_random, stop_after_attempt

# 设置重试等待间隔为1到3之间的随机数
@retry(wait=wait_random(min=1, max=3), stop=stop_after_attempt(5))
def demo_func6():

    print(f'已过去 {time.time() - start_time} 秒')

    raise Exception

# 记录开始时间
start_time = time.time()
demo_func6()

可以观察到,每一次重试后的等待时长都是随机的~

2.6 自定义是否触发重试

tenacity中retry()的默认策略是当其所装饰的函数执行过程“抛出任何错误”时即进行重试,但有些情况下我们需要的可能是对特定错误类型的捕捉/忽略,亦或是对异常计算结果的捕捉。

tenacity中同样内置了相关的实用功能:

2.6.1 捕捉或忽略特定的错误类型

使用tenacity中的retry_if_exception_type()和retry_if_not_exception_type(),配合retry()的retry参数,我们可以对特定的错误类型进行捕捉或忽略:

from tenacity import retry, retry_if_exception_type, retry_if_not_exception_type

@retry(retry=retry_if_exception_type(FileExistsError))
def demo_func7():

    raise TimeoutError

@retry(retry=retry_if_not_exception_type(FileNotFoundError))
def demo_func8():

    raise FileNotFoundError

2.6.2 自定义函数结果条件判断函数

我们可以编写额外的条件判断函数,配合tenacity中的retry_if_result(),实现对函数的返回结果进行自定义条件判断,返回True时才会触发重试操作:

import random
from tenacity import retry, retry_if_result

@retry(retry=retry_if_result(lambda x: x >= 0.1))
def demo_func9():
    a = random.random()
    print(a)
    return a

# 记录开始时间
demo_func9()

2.7 对函数的错误重试情况进行统计

被tenacity的retry()装饰的函数,我们可以打印其retry.statistics属性查看其历经的错误重试统计记录结果,譬如这里我们对前面执行过的示例函数demo_func9()的统计结果进行打印:

demo_func9.retry.statistics

除了上述的功能之外,tenacity还具有很多特殊的特性,可以结合logging模块、异步函数、协程等其他Python功能实现更高级的功能,感兴趣的朋友可以前往https://github.com/jd/tenacity了解更多。

到此这篇关于Python中最强大的错误重试库(tenacity库)的文章就介绍到这了,更多相关Python tenacity错误重试库内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 关于Python错误重试方法总结

    前言 Tenacity是一个 Apache 2.0授权的通用重试库,用 Python 编写,用于简化向几乎所有内容添加重试行为的任务.它起源于一个重新尝试的分支,可惜这个分支已经不复存在了. 使用Tenacity可以用来进行测试用例的重跑,爬虫脚本的重跑,以及抢票的失败重抢等等...可以使用的场景也是比较多. 使用 首先安装Tenacity pip install Tenacity 无限重试 第一个重试案例,因为一直是抛出异常错误,所以无限进行重试执行 from tenacity import

  • Python中最强大的错误重试库(tenacity库)

    目录 1 简介 2 tenacity中的常用功能 2.1 tenacity的基础使用 2.2 设置最大重试次数 2.3 设置重试最大超时时长 2.4 组合重试停止条件 2.5 设置相邻重试之间的时间间隔 2.6 自定义是否触发重试 2.7 对函数的错误重试情况进行统计 1 简介 我们在编写程序尤其是与网络请求相关的程序,如调用web接口.运行网络爬虫等任务时,经常会遇到一些偶然发生的请求失败的状况,这种时候如果我们仅仅简单的捕捉错误然后跳过对应任务,肯定是不严谨的,尤其是在网络爬虫中,会存在损失

  • Python 中拼音库 PyPinyin 用法详解

    最近碰到了一个问题,项目中很多文件都是接手过来的中文命名的一些素材,结果在部署的时候文件名全都乱码了,导致项目无法正常运行. 后来请教了一位大佬怎么解决文件名乱码的问题,他说这个需要正面解决吗?不需要,把文件名全部改掉,文件名永远不要用中文,永远不要. 我想他这么说的话,一定也是凭经验得出来的. 这里也友情提示大家,项目里面文件永远不要用中文,永远不要! 好,那不用中文用啥?平时来看,一般我们都会用英文来命名,一般也不会出现中文,比如 resource, controller, result,

  • 解决python中0x80072ee2错误的方法

    解决python中出现x80072ee2错误的方法: 在官网上直接下载"python-3.7.2-amd64.exe"并安装即可: 因为如果安装"python-3.7.2-amd64-webinstall.exe",自动访问外网,导致无法访问. 安装错误信息: Setup failed One or more issues caused the setup to fail.Please fix the issues and then retry setup.For

  • python中的字典详细介绍

    一.什么是字典? 字典是Python语言中唯一的映射类型. 映射类型对象里哈希值(键,key)和指向的对象(值,value)是一对多的的关系,通常被认为是可变的哈希表. 字典对象是可变的,它是一个容器类型,能存储任意个数的Python对象,其中也可包括其他容器类型. 字典类型与序列类型的区别: 1.存取和访问数据的方式不同. 2.序列类型只用数字类型的键(从序列的开始按数值顺序索引): 3.映射类型可以用其他对象类型作键(如:数字.字符串.元祖,一般用字符串作键),和序列类型的键不同,映射类型的

  • 详解Python中的循环语句的用法

    一.简介 Python的条件和循环语句,决定了程序的控制流程,体现结构的多样性.须重要理解,if.while.for以及与它们相搭配的 else. elif.break.continue和pass语句. 二.详解 1.if语句 Python中的if子句由三部分组成:关键字本身.用于判断结果真假的条件表达式以及当表达式为真或者非零时执行的代码块.if 语句的语法如下: if expression: expr_true_suite if 语句的expr_true_suite代码块只有在条件表达式的结

  • Anaconda下Python中GDAL模块的下载与安装过程

    本文介绍在Anaconda环境下,安装Python中栅格.矢量等地理数据处理库GDAL的方法. 需要注意的是,本文介绍基于conda install命令直接联网安装GDAL库的方法:这一方法有时不太稳定,且速度较慢.因此,如果有需要,大家可以参考Anaconda环境GDAL库基于whl文件的配置方法(https://www.jb51.net/article/280638.htm)这篇文章中的方法,可以更快速地配置GDAL库. 首先,我们打开“Anaconda Prompt (Anaconda)”

  • python中文件变化监控示例(watchdog)

    在python中文件监控主要有两个库,一个是pyinotify ( https://github.com/seb-m/pyinotify/wiki),一个是watchdog(http://pythonhosted.org/watchdog/).pyinotify依赖于Linux平台的inotify,后者则对不同平台的的事件都进行了封装.因为我主要用于Windows平台,所以下面着重介绍watchdog(推荐大家阅读一下watchdog实现源码,有利于深刻的理解其中的原理). watchdog在不

  • Python中的日期时间处理详解

    Python中关于时间.日期的处理库有三个:time.datetime和Calendar,其中datetime又有datetime.date.datetime.time.datetime.datetime三个类.而时间又可以分为时间戳.本地时间和UTC时间(世界标准时间).是不是听起来有点乱?那么他们相互之间有什么区别?有什么联系?又如何转换呢? time模块 在time模块中,时间有三种表现形式: 时间戳,一般指Unix时间戳,是从1970年开始到现在的秒数. 本地时间的struct_time

  • Python中如何优雅的合并两个字典(dict)方法示例

    前言 字典是Python中最强大的数据类型之一,本文将给大家详细介绍关于Python合并两个字典(dict)的相关内容,分享出来供大家参考学习,话不多说了,来一起看看详细的介绍吧. 一行代码合并两个dict 假设有两个dict x和y,合并成一个新的dict,不改变 x和y的值,例如 x = {'a': 1, 'b': 2} y = {'b': 3, 'c': 4} 期望得到一个新的结果Z,如果key相同,则y覆盖x.期望的结果是 >>> z {'a': 1, 'b': 3, 'c':

  • Python中字典(dict)合并的四种方法总结

    本文主要给大家介绍了关于Python中字典(dict)合并的四种方法,分享出来供大家参考学习,话不多说了,来一起看看详细的介绍: 字典是Python语言中唯一的映射类型. 映射类型对象里哈希值(键,key)和指向的对象(值,value)是一对多的的关系,通常被认为是可变的哈希表. 字典对象是可变的,它是一个容器类型,能存储任意个数的Python对象,其中也可包括其他容器类型. 字典类型与序列类型的区别: 1. 存取和访问数据的方式不同. 2. 序列类型只用数字类型的键(从序列的开始按数值顺序索引

随机推荐